AQA Maths Pure Core 4 Mark Scheme Pack 2006-2015

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$\mathrm{f}(1)=0$	B1	1	
(ii)	$f(-2)=-24+8+14+2=0$	B1	1	
(iii)	$\frac{(x-1)(x+2)}{3 x^{2}+2 x^{2}-7 x+2}=\frac{(x-1)(x+2)}{(x-1)(x+2)(a x+b)}$			Recognising $(x-1),(x+2)$ as factors
	$3 x^{3}+2 x^{2}-7 x+2=\frac{(x-1)(x+2)(a x+b)}{(x-1)}$	B1		
	$a x^{3}=3 x^{3} \quad-2 b=2$	B1	3	
	$a=3 \quad b=-1$	B1		
				Or By division M1 attempt started
				M1 complete division
				A1 Correct answers
(b)	Use $\frac{1}{3}$	B1		
	$3\left(\frac{1}{3}\right)^{3}+2\left(\frac{1}{3}\right)^{2}-7 \times \frac{1}{3}+d=2$	M1		Remainder $\mathrm{Th}^{\underline{\mathrm{M}}}$ with $\pm \frac{1}{3} \pm 3$
	$d=4$	A1F	3	Ft on $-\frac{1}{3}\left(\right.$ answer $\left.-\frac{4}{9}\right)$ Or by division M1 M1 A1 as above
	Total		8	
2(a)	$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{-2}{t^{2}} \quad \frac{\mathrm{~d} x}{\mathrm{~d} t}=-4$	M1A1		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{1}{\mathrm{~d} x}=\frac{1}{2 t^{2}}$	m1		Use chain rule
		A1F	4	Follow on use of chain rule (if $\mathrm{f}(t)$)
				Or eliminate $t: \mathrm{M} 1 \quad y=\mathrm{f}(x)$ attempt to differentiate M1A1 chain rule A1F reintroduce t
(b)	$t=2 \quad m_{\mathrm{T}}=\frac{1}{8}$	B1F		follow on gradient (possibly used later)
	$x=-5 \quad y=2$	B1		
	$y-2=\frac{1}{8}(x+5)$	M1		Their (x, y), m
	$x-8 y+21=0$	A1F	4	Ft on (x, y) and m
(c)	$x-3=-4 t \quad y-1=\frac{2}{t}$	M1		
	$(x-3)(y-1)=-4 t \times \frac{2}{t}=(-8)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	3	Attempt to eliminate t AG convincingly obtained
	Total		11	

MPC4 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
3(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& R=\sqrt{13} \quad \text { Or } 3.6 \\
\& \frac{\sin \alpha}{\cos \alpha}=\tan \alpha=\frac{2}{3} \quad \alpha \approx 33.7 \\
\& \text { maximum value }=\sqrt{13} \\
\& \cos (\theta+33.7)=1 \quad(\theta=-33.7) \\
\& \theta=326.3
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
B1F \\
M1 \\
A1
\end{tabular} \& 3 \& \begin{tabular}{l}
Allow M1 for \(\tan \alpha=\frac{-2}{3}\) or \(\pm \frac{3}{2}\) AG convincingly obtained \\
AWRT 326
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline \begin{tabular}{l}
4(a) \\
(b) \\
(c)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& A=80 \\
\& 5000=80 \times k^{56} \\
\& k=\sqrt[56]{\frac{5000}{80}} \approx 1.07664
\end{aligned}
\]
\[
V=80 \times k^{106}=200707
\] \\
\(\ln 10000=\ln k^{t}\)
\[
t=\frac{\ln 10000}{\ln k}=124.7 \Rightarrow 2024
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1A1 \\
M1A1 \\
M1 \\
M1A1
\end{tabular} \& 3

2
2

3 \& | $\{$ SC1 Verification. Need 62.51 or better |
| :--- |
| Or using logs: M1 $\ln \left(\frac{5000}{80}\right)=56 \ln k$ |
| $\mathrm{A} 1 \mathrm{k}=\mathrm{e}^{\ln \left(\frac{62.5}{56}\right)}$ |
| Or $3 / 3$ for $k=1.076636$ |
| Or $\quad 1.076637$ seen |
| 200648 using full register k |
| M1 $t \ln k=\ln 10000$ |
| A1 CAO |
| Or trial and improvement M1 expression M1 125, 124, A1 2024 |

\hline \& Total \& \& 9 \&

\hline 5(a)(i) ${ }^{\text {(ii) }}$ (${ }^{\text {(}}$ (b) \& $$
\begin{aligned}
&(1-x)^{-1}=1+(-1)(-x)+\frac{(-1)(-2)}{2}(-x)^{2} \\
&=1+x+x^{2} \\
& \frac{1}{(3-2 x)}=\frac{1}{3}\left(1-\frac{2}{3} x\right)^{-1} \\
& \approx *\left(1+\frac{2}{3} x+\left(\frac{2}{3} x\right)^{2}\right) \\
& \approx \frac{1}{3}+\frac{2}{9} x+\frac{4}{27} x^{2}
\end{aligned}
$$

\[
$$
\begin{aligned}
(1-x)^{-2} & =1+(-2)(-x)+\frac{(-2)(-3)(-x)^{2}}{2} \\
& =1+2 x+3 x^{2}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 | \& 2

3 \& | First two terms $+k x^{2}$ |
| :--- |
| Or directly substitute into formula; |
| M1 power of 3 |
| M1 other coefficients (allow one error) |
| A1 CAO |
| AG convincingly obtained |
| First two terms $+k x^{2}$ |

\hline
\end{tabular}

MPC4 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline (b)(i) \& \[
\begin{aligned}
\& l_{2} \text { has equation } \\
\& \mathrm{r}=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]+\lambda\left[\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{r}
2 \\
-3 \\
-1
\end{array}\right]\right]=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]+\lambda\left[\begin{array}{l}
2 \\
4 \\
2
\end{array}\right] \\
\& {\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
4 \\
0 \\
-4
\end{array}\right]=4-4=0} \\
\& \Rightarrow 90^{\circ}(\text { or perpendicular })
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
M1A1 \\
A1F
\end{tabular} \& 2

3 \& | Or $r=\left[\begin{array}{c} 2 \\ -3 \\ -1 \end{array}\right]+t\left[\begin{array}{l} 2 \\ 4 \\ 2 \end{array}\right] \mathrm{M} 1 \text { calculate and use }$ |
| :--- |
| direction vector A1 all correct |
| Clear attempt to use directions of $A C$ and l_{2} in scalar product |
| Accept a correct ft value of $\cos \theta$ |

\hline \& Total \& \& 10 \&

\hline 8(a) \& | $\begin{aligned} & \int \frac{\mathrm{d} x}{\sqrt{x-6}} \mathrm{~d} x=\int-2 \mathrm{~d} t \\ & 2 \sqrt{x-6}=-2 t+c \\ & t=0 \quad x=70 \quad \Rightarrow \quad c=16 \\ & t=8-\sqrt{x-6} \end{aligned}$ |
| :--- |
| The liquid level stops falling/flowing/ at minimum depth $x=22 \quad t=8-\sqrt{22-6}$ $t=4$ | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1A1 } \\
\text { m1A1F } \\
\text { A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$

\] \& 2 \& | Attempt to separate and integrate c on either side |
| :--- |
| Follow on c from sensible attempt at integrals $(\sqrt{\text { not }} \ln)$ |
| CAO (or AEF) |
| Use $x=22$ in their equation provided there is a c |
| Or start again using limits M1 $2 \sqrt{64}-2 \sqrt{16}= \pm 2 t$, A1 $t=4$ CAO |

\hline \& Total \& \& 9 \&

\hline \& Total \& \& 75 \&

\hline
\end{tabular}

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x \mathrm{EE}$	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

Q	Solution	Marks	Total	Comments
1 (a)(i)	$\mathrm{p}(2)=0$	B1	1	
(ii)	$\text { See }-\frac{1}{2}$	B1		
	$\begin{aligned} & \mathrm{p}\left(-\frac{1}{2}\right)=6 \times\left(-\frac{1}{8}\right)-19 \times \frac{1}{4}+9\left(-\frac{1}{2}\right)+10 \\ & =0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	$\text { Use } \pm \frac{1}{2}$ Arithmetic to show $=0$ and conclusion. Long division : 0/3
(iii)	$\mathrm{p}(x)=(2 x+1)(x-2)(3 x-5)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$x-2$ Complete expression
(b)	$\frac{3 x(x-2)}{(2 x+1)(x-2)(3 x-5)}$	M1		For $\frac{3 x(x-2)}{\text { their (a)(iii) }}$
	$=\frac{3 x}{(2 x+1)(3 x-5)}$	A1	2	Or $\frac{3 x}{6 x^{2}-7 x-5} \quad$ No ISW on A1
	Total		8	
2(a)	$(1-x)^{-3}=1+(-3)(-x)+\frac{(-3)(-4)(-x)^{2}}{2}$	M1		$1 \pm 3 x+x^{2}$ term
	$=1+3 x+6 x^{2}$	A1	2	
(b)	$\left(1-\frac{5}{2} x\right)^{-3}=1+3\left(\frac{5}{2} x\right)+6\left(\frac{5}{2} x\right)^{2}$	M1		$x \rightarrow \frac{5}{2} x$, incl. $\left(\frac{5}{2} x\right)^{2}$ seen or implied (or start again)
	$=1+\frac{15}{2} x+\frac{75}{2} x^{2}$	A1	2	CAO OE
(c)	$\left\|\frac{5}{2} x\right\|<1 \quad\|x\|<\frac{2}{5}$	M1A1	2	$\text { Sight of } \frac{ \pm 5}{2} \text { or } \frac{ \pm 2}{5}$
(d)	$=8\left(1+\frac{15}{2} x+\frac{75}{2} x^{2}\right)=8+60 x+300 x^{2}$	M1		$k \times \text { their }\left(1-\frac{5}{2} x\right)^{-3}$
		A1F	2	$\text { ft only on } 8\left(1-\frac{5}{2} x\right)^{-3}$
	Alternatively, start again: $8 \times$ expression or $k \times\left(1-3\left(\pm \frac{5}{2} x\right)\right)$ CAO	(M1) (A1)		
	Total		8	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
(b)	$\begin{aligned} & 9 x^{2}-6 x+5 \\ & =3(3 x-1)(x-1)+A(x-1)+B(3 x-1) \\ & x=1 \quad x=\frac{1}{3} \\ & B=4 \quad A=-6 \end{aligned}$	B1 M1 A1A1 M1 B1 M1 A1F	4	Or $3+\frac{6 x+2}{(3 x-1)(x-1)}$ Substitute $x=1$ or $x=\frac{1}{3}$ Or equivalent method (equating coefficients, simultaneous equations) Attempt to use partial fractions $p \ln (3 x-1)+q \ln (x-1)$ Condone missing brackets Follow through on A and B; brackets needed.
	Total		8	
4(a)(i)	$\sin 2 x=2 \sin x \cos x$	B1	1	
(ii)	$\cos 2 x=2 \cos ^{2} x-1$	B1	1	
(b)	$\begin{aligned} & \sin 2 x-\tan x=2 \sin x \cos x-\frac{\sin x}{\cos x} \\ & =\sin x\left(2 \cos x-\frac{1}{\cos x}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		Use of their $\cos 2 x$ orsin $2 x$ Use of $\tan x=\frac{\sin x}{\cos x}$ and the other double angle identity
	$=\sin x\left(\frac{2 \cos ^{2} x-1}{\cos x}\right)=\tan x \cos 2 x$	A1	3	AG convincingly obtained
(c)	$\tan x \cos 2 x=0 \quad x=180$	B1		Ignore $x=0, x=360^{\circ}$ \& any others outside range
	$\begin{aligned} & \cos 2 x=0 \text { or } \cos ^{2} x=\frac{1}{2}\left(\text { or } \sin ^{2} x=\frac{1}{2}\right) \\ & x=45 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		
		A1	4	CAO max $3 / 4$ for answers in radians
	Total		9	

Q	Solution	Marks	Total	Comments
(b)(i)	$\begin{aligned} & x=1 \quad y^{2}-y+3-5=0 \\ & (y-2)(y+1)=0 \\ & y=2 \quad y=-1 \end{aligned}$	M1 M1 A1	3	Attempt to solve quadratic equation with $x=1$
	$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y+6 x=0$	$\begin{gathered} \text { B1B1 } \\ \text { B1 } \\ \text { M1A1 } \end{gathered}$		$+6 x ;-5 \rightarrow 0$ Chain rule Product rule (M1 two terms)
	$6 x-y+(2 y-x) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$	A1	6	Factorise and obtain answer given
	Alternative $\begin{gathered} \left.\begin{array}{l} \frac{\mathrm{d} y}{\mathrm{~d} x}(y-x)^{2}=(y-x)(0-6 x) \\ -\left(5-3 x^{2}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}-1\right) \\ \frac{\mathrm{d} y}{\mathrm{~d} x}\left[(y+x)^{2}+\left(5-3 x^{2}\right)\right] \end{array}\right]=(y-x)(-6 x) \\ +\left(5-3 x^{2}\right) \end{gathered}$	(B1) (B1) (M1) (A1) (A1)		$\begin{aligned} & 5 \rightarrow 0 \\ & -6 x \\ & \text { Recognisable attempt at quotient rule } \\ & \text { Completely correct OE } \\ & \text { Factorise out } \frac{\mathrm{d} y}{\mathrm{~d} x} \end{aligned}$
	Given answer	(A1)		Correct answer from correct working Be convinced
(ii)	$(1,2) \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4}{3}$	M1		Substitute $x=1$ and one y value from (a)
	$(1,-1) \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{7}{3}$	A1F	2	Both; follow on candidates $y \mathrm{~s}$ OE $\frac{-7}{-3} ; 3 \mathrm{SF}$
(iii)	$y-6 x=0$	B1		
	$(6 x)^{2}-x \times 6 x+3 x^{2}-5=0$	M1		
	$\begin{aligned} & 36 x^{2}-6 x^{2}+3 x^{2}-5=0 \\ & 33 x^{2}-5=0 \end{aligned}$	A1	3	AG convincingly obtained
	Total		14	

MPC4 (cont)

Q	Solution	Marks	Total	Comments	
6(a)(i)	$\overrightarrow{O C}=2\left[\begin{array}{r} 3 \\ 2 \\ -1 \end{array}\right]=\left[\begin{array}{r} 6 \\ 4 \\ -2 \end{array}\right]$	B1	1	(Penalise coordinates once only)	
(ii)	$\overrightarrow{A B}=\left[\begin{array}{r} 3 \\ 2 \\ -1 \end{array}\right]-\left[\begin{array}{l} 2 \\ 4 \\ 1 \end{array}\right]=\left[\begin{array}{r} 1 \\ -2 \\ -2 \end{array}\right]$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\overrightarrow{O A}-\overrightarrow{O B}$ or $\overrightarrow{O B}-\overrightarrow{O A}$ or $2 / 3$ correct cpts. A0 for line $A B$	
(b)(i)	$A C^{2}=(6-2)^{2}+(4-4)^{2}+(-1-2)^{2}=25$	M1		\|Components of AC	 AG
(ii)	$\begin{aligned} & A C=5 \\ & \overrightarrow{A B} \cdot \overrightarrow{A C}=\left[\begin{array}{r} 1 \\ -2 \\ -2 \end{array}\right] \cdot\left[\begin{array}{r} 4 \\ 0 \\ -3 \end{array}\right]=4+6=10 \end{aligned}$	A1 M1 A1F	2	AG Clear attempt to use $\overrightarrow{A B}$ and $\overrightarrow{A C}$ ft $\overrightarrow{A B}$ from a(ii) and/or $\overrightarrow{A C}$ from b(i)	
	$3 \times 5 \times \cos \theta=10$	M1		Use of $\|a\|\|b\| \cos \theta=\mathbf{a . b}$ with one correct $\|\mid$ and $\mathbf{a . b}$ evaluated	
	$\theta=48.189 \approx 48^{\circ}$	A1	4	CAO (AWRT)	
	Alternative: use of cos rule Find $3^{\text {rd }}$ side + use cos rule	(M2) (A1F) (A1)		ft on previously found vectors CAO (AWRT)	
(c)	$\overrightarrow{B P}=\left[\begin{array}{r} \alpha-3 \\ \beta-2 \\ \gamma--1 \end{array}\right]$	B1			
	$\left[\begin{array}{r} 4 \\ 0 \\ -3 \end{array}\right] \cdot \overrightarrow{B P}=0$	M1		Their $\overrightarrow{B P}$	
	$4 \alpha-3 \gamma-15=0$	A1	3	AG convincingly obtained	
	Total		12		

MPC4 (cont)

Q	Solution	Marks	Total	Comments
7	$\begin{aligned} & \int \frac{\mathrm{d} y}{y^{2}}=\int 6 x \mathrm{~d} x \\ & -\frac{1}{y}=3 x^{2}(+C) \\ & x=2 \quad y=1 \quad C=-13 \\ & y=\frac{1}{13-3 x^{2}} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	6	Attempt to separate Either $\mathrm{d} x$ or $\mathrm{d} y$ in right place $-\frac{1}{y} ; 3 x^{2}$ Use $(2,1)$ to find a constant. CAO CAO OE
	Total		6	
8(a)(i)	$(5000-x)$ seen in a product $\frac{\mathrm{d} x}{\mathrm{~d} t}=k x(5000-x)$	B1 B1	2	Could be implied, eg 5000a-xa
(ii)	$200=k \times 1000 \times(5000-1000)$	M1		$\frac{\mathrm{d} x}{\mathrm{~d} t}=200, x=1000$ in their diff. equation Condone $t \mathrm{~s}$ and $t=0$ for M1
	$k=0.00005$	A1	2	CAO OE
(b)(i)	$t=4 \ln \left(\frac{4 \times 2500}{5000-2500}\right)=5.5 \text { (hours) }$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	$\begin{aligned} & x \rightarrow 2500(\text { or } 4 \ln 4) \\ & \text { CAO } \end{aligned}$
(ii)	$\mathrm{e}^{\frac{30}{4}}$	B1		
	$\mathrm{e}^{7.5}=\frac{4 x}{5000-x}$	M1		OE
	$5000 \times \mathrm{e}^{7.5}=x\left(4+\mathrm{e}^{7.5}\right)$	m1		Soluble for x
	$x=4988.96 . . \Rightarrow 4989$ rabbits infected	A1	4	Or 4988 or 4990; integer value only
	Total		10	
TOTAL			75	

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^0]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

Q	Solution	Marks	Total	Comments
$\mathbf{1 (a) (i)}$ (ii) (b) (c)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=2, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-8 t \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x}=\frac{-8 t}{2}=-4 t \\ & m_{T}=-4, \quad m_{N}=\frac{1}{4} \\ & x=3 \quad y=-3 \\ & \frac{y--3}{x-3}=\frac{1}{4} \Rightarrow \frac{y+3}{x-3}=\frac{1}{4} \\ & t=\frac{x-1}{2} \\ & y=1-4\left(\frac{x-1}{2}\right)^{2} \end{aligned}$	B1, B1 M1 A1F B1F, B1F M1 A1 M1 M1A1	2 2 2 4 4 3	CAO Chain rule in correct form ft on sign coefficient errors (not power of t) ft on $\frac{d y}{d x}$ if $f(t)$ Use candidate's (x, y) and m_{N} Any correct form; ISW; CAO Substitute for t Simplification not required but CAO Or equivalent methods / forms: $\begin{aligned} & y=2 x-x^{2}, t^{2}=\frac{1-y}{4} \\ & \left(\frac{x-1}{2}\right)^{2}=\frac{1-y}{4} \end{aligned}$
	Total		11	
2(a) (b) (c)	$\begin{aligned} & \mathrm{f}\left(\frac{3}{2}\right)=2\left(\frac{3}{2}\right)^{3}-7\left(\frac{3}{2}\right)^{2}+13 \\ & \mathrm{~g}\left(\frac{3}{2}\right)=0 \Rightarrow d+4=0 \Rightarrow d=-4 \\ & a=-2, \quad b=-3 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1A1 } \\ \text { B1, B1 } \end{gathered}$	2 2 2	Substitute $\pm \frac{3}{2}$ in $\mathrm{f}(x)$ AG (convincingly obtained) SC Written explanation with $g\left(\frac{3}{2}\right)=0$ not seen/clear E2,1,0 Inspection expected By division: M1 - complete method A1 CAO Multiply out and compare coefficients: M1 - evidence of use A1 - both a and b correct
	Total		6	

Q	Solution	Marks	Total	Comments
3(a)	$\cos 2 x=1-2 \sin ^{2} x$	B1	1	
(b)(i)	$\begin{aligned} 3 \sin x-\cos 2 x & =3 \sin x-\left(1-2 \sin ^{2} x\right) \\ & =3 \sin x-1+2 \sin ^{2} x \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\begin{aligned} & \text { Candidate's } \cos 2 x \text { or } \sin ^{2} x \\ & \text { AG } \end{aligned}$
(ii)	$\begin{aligned} & 2 \sin ^{2} x+3 \sin x-2=0 \\ & (2 \sin x-1)(\sin x+2)=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		Soluble quadratic form Attempt to solve (allow one error in formula, allow sign errors)
	$\sin x=\frac{1}{2} \quad x=30 \quad x=150$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	4	$\sin ^{-1}$ and two solutions $\left(0^{\circ}<x<360^{\circ}\right)$ A0 if radians
	Allow misread for $\begin{aligned} & 2 \sin ^{2} x+3 \sin x-1=0 \\ & \sin x=\frac{-3 \pm \sqrt{17}}{4} \end{aligned}$	(M1) (M1)		Soluble quadratic form Use of formula (allow one error)
	$x=16.3^{\circ}, 163.7^{\circ}$	(A1)		Max 3/4
(c)	$\int \frac{1}{2}(1-\cos 2 x)=\frac{x}{2}-\frac{\sin 2 x}{4}(+c)$	M1A1	2	M1 - solve integral, must have 2 terms for $\sin ^{2} x$ from (a)
			9	
4(a)(i)	$\frac{3 x-5}{x-3}=3+\frac{4}{x-3}$	B1, B1	2	By division: B1 for 3, B1 for $\frac{4}{x-3}$ or $B=4$ By partial fractions: M1 multiply by $x-3$ and using 2 values of x, A1 both correct
(ii)	$\int 3+\frac{4}{x-3} \mathrm{~d} x=3 x+4 \ln (x-3)(+c)$	M1A1F	2	M1 $\int 3+\frac{4}{x-3} \mathrm{~d} x$ and attempt at integrals ft on A and B; condone omission of brackets around $x-3$
	Alternative: By substitution $u=x-3$ $\begin{aligned} & \int \frac{3 x-5}{x-3} \mathrm{~d} x=\int \frac{3 u+4}{u} \mathrm{~d} u \\ & =3(x-3)+4 \ln (x-3) \end{aligned}$	(M1) (A1)		Integral in terms of u Correct, in x
(b)(i)	$6 x-5=P(2 x-5)+Q(2 x+5)$	M1		Clear evidence of use of cover-up rule M2
	$\begin{array}{ll} x=\frac{5}{2} & x=-\frac{5}{2} \\ 10=10 Q & -20=-10 P \\ Q=1 & P=2 \end{array}$	m1 A1	3	
(ii)	$\int \frac{2}{2 x+5}+\frac{1}{2 x-5} \mathrm{~d} x$	M1		Attempt at ln integral $(a \ln (2 x+5)+b \ln (2 x-5))$
	$\ln (2 x+5)+\frac{1}{2} \ln (2 x-5)(+c)$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	3	ft on P and Q; must have brackets
	Total		10	

MPC4 (cont)

MPC4 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\overrightarrow{B A}=\left[\begin{array}{r} 3 \\ -2 \\ 4 \end{array}\right]-\left[\begin{array}{l} 5 \\ 4 \\ 0 \end{array}\right]=\left[\begin{array}{r} -2 \\ -6 \\ 4 \end{array}\right]$	M1A1	2	Attempt $\pm \overrightarrow{B A}(O A-O B$ or $O B-O A)$
(ii)	$\overrightarrow{B C}=2$	B1		Allow $\overrightarrow{C B}$; or $\left[\begin{array}{r}-6 \\ -2 \\ 4\end{array}\right]=\overrightarrow{B C}$ or $\overrightarrow{C B}=\left[\begin{array}{r}6 \\ 2 \\ -4\end{array}\right]$ May not see explicitly
	$\left.\|\overrightarrow{B A}\| \mid=\sqrt{(-2)^{2}+(-6)^{2}+(4)^{2}}\right)=\sqrt{56}$	B1F		Calculate modulus of $\overrightarrow{B A}$ or $\overrightarrow{B C}$; for finding modulus of one of vectors they have used
	$\overrightarrow{B A} \cdot \overrightarrow{B C}=\left[\begin{array}{r} -6 \\ 4 \end{array}\right] \cdot\left[\begin{array}{r} 2 \\ -4 \end{array}\right]=-12-12-16$	M1		Attempt at $\overrightarrow{B A} \bullet \overrightarrow{B C}$ with numerical answer; or $\overrightarrow{A B} \cdot \overrightarrow{C B}$
		A1		for -40 , or correct if done with multiples of vectors
	$\cos A B C=\frac{-40}{\sqrt{56} \sqrt{56}}=-\frac{5}{7}$	A1	5	AG (convincingly obtained)
				Cosine rule: M1 attempt to find 3 sides A1 lengths of sides M1 cosine rule A1F correct A1 rearrange to get $\cos A B C=\frac{-5}{7}$ (ft on length of sides)

MPC4 (cont)

Q	Solution	Marks	Total	Comments
$\begin{array}{r} 6 \text { (cont) } \\ \text { (b)(i) } \end{array}$	$\left[\begin{array}{r} 8 \\ -3 \\ 2 \end{array}\right]+\lambda\left[\begin{array}{r} 1 \\ 3 \\ -2 \end{array}\right]=\left[\begin{array}{r} 11 \\ 6 \\ -4 \end{array}\right] \quad(\lambda=3)$	M1A1	2	$\lambda=3$ verified in three equations M1 for $\left\{\begin{array}{l}11=8+\lambda \\ 6=-3+3 \lambda \\ -4=2-2 \lambda\end{array}\right.$ A1 for $\lambda=3$ shown for all three equations $\lambda\left[\begin{array}{r} 1 \\ 3 \\ -2 \end{array}\right]=\left[\begin{array}{r} 11 \\ 6 \\ -4 \end{array}\right]-\left[\begin{array}{r} 8 \\ -3 \\ 2 \end{array}\right] \therefore \lambda=3 \quad \text { M1A1 }$ SC: $\lambda=3$ written and nothing else: SC1
(ii)	$\left[\begin{array}{r} 2 \\ 6 \\ -4 \end{array}\right]=2\left[\begin{array}{r} 1 \\ 3 \\ -2 \end{array}\right]$ \therefore same direction or same gradient or parallel			
(c)	$\overrightarrow{O D}=\overrightarrow{O C}+\overrightarrow{B A}$	B1		PI; $\overrightarrow{O D}=$ correct vector expression which may involve $\overrightarrow{A D}$
	$=\left[\begin{array}{r} 11 \\ 6 \\ -4 \end{array}\right]+\left[\begin{array}{r} -2 \\ -6 \\ 4 \end{array}\right]=\left[\begin{array}{l} 9 \\ 0 \\ 0 \end{array}\right] \quad D \text { is }(9,0,0)$	M1A1	3	M1 for substituting into vector expression for $\overrightarrow{O D}$ NMS 3/3
	Total		13	
7(a)	$\tan (x+x)=\frac{\tan x+\tan x}{1-\tan x \tan x}\left(=\frac{2 \tan x}{1-\tan ^{2} x}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	$A=B=x$ used
(b)	$2-2 \tan x-\frac{2 \tan x\left(1-\tan ^{2} x\right)}{2 \tan x}$	M1		Substitute from (a)
	$2-2 \tan x-(1-\tan x)(1+\tan x)$	M1		Simplification $2-2 \tan x-\left(1-\tan ^{2} x\right)$
	$(1-\tan x)(2-(1+\tan x))$	M1		$2-2 \tan x-1+\tan ^{2} x$
	$(1-\tan x)^{2}$	A1	4	AG (convincingly obtained)
				$=(\tan x-1)^{2}=(1-\tan x)^{2}$ Any equivalent method
	Total		6	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
8(a)(i)	$\int \frac{\mathrm{d} y}{y}=\int \sin t \mathrm{~d} t$	M1		Attempt to separate and integrate
	$\ln y=-\cos t+C$	A1,A1		A1 for $\ln y$; A1 for $-\operatorname{cost}$; condone missing C
	$y=A \mathrm{e}^{-\cos t}$	A1	4	A present; or $y=\mathrm{e}^{-\operatorname{cost}+C}$
(ii)	$y=50, t=\pi: \quad 50=A \mathrm{e}^{-\cos \pi}=A \mathrm{e}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Substitute $y=50, t=\pi$ to find constant Can have $50=\mathrm{e}^{1+C}$ if substituted in above $e^{C}=\frac{50}{e}$
	$y=50 \mathrm{e}^{-1} \mathrm{e}^{-\cos t}$	A1	3	AG (convincingly obtained)
	Alternative:			Alternative:
	Must have a constant in answer to (a)(i) $y=A \mathrm{e}^{-\cos t} \text { or } y=\mathrm{e}^{-\cos t+c} \text { or } \ln y=-\cos t+c$			$\begin{aligned} \text { Substitute } y=50, & t=\pi \text { into } \\ \ln y=-\cos t+c & \text { M1 } \\ \ln y=-\cos t+\ln 50-1 & \text { A1 } \end{aligned}$
	$\begin{array}{llll} 50=A \mathrm{e}^{-\cos \pi} & 50=\mathrm{e}^{-\cos \pi+c} \quad \ln 50=-\cos \pi+c \tag{AG}\\ 50=A \mathrm{e} & 50=\mathrm{e}^{1+c} & \ln y=-\cos t+\ln 50-1 \end{array}$	(M1) (A1)		$\ln \frac{y}{50}=-1-\cos t$
	$y=50 \mathrm{e}^{-1-\cos t} y=\mathrm{e}^{-\cos t} \frac{50}{\mathrm{e}} \ln \left(\frac{y}{50}\right)=-1-\cos t$	(A1)		
(b)(i)	$t=6: y=50 \mathrm{e}^{-1} \mathrm{e}^{-\cos 6}=7.0417 \ldots \approx 7 \mathrm{~cm}$	M1A1	2	Degrees 6.8 SC1 7 or 7.0 for A1
(ii)	$t=\pi \Rightarrow(\sin t=0 \Rightarrow) \frac{\mathrm{d} y}{\mathrm{~d} t}=0$	B1		Condone x for t
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=y \cos t+\frac{\mathrm{d} y}{\mathrm{~d} t} \sin t$	M1		For attempt at product rule including $\frac{\mathrm{d} y}{\mathrm{~d} t}$ term; must have $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=$
		A1		
	$\begin{aligned} t & =\pi \\ \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}} & =y \cos \pi+\frac{\mathrm{d} y}{\mathrm{~d} t} \sin \pi \\ & =-50 \Rightarrow \max \end{aligned}$	A1	4	Accept $=-y$, with explanation that y is never negative

MPC4 (cont)

Q	Solution	Marks	Total	Comments
$\begin{gathered} \hline \text { 8(b)(ii) } \\ \text { (cont) } \end{gathered}$	Alternative: $\begin{aligned} & y=50 \mathrm{e}^{-(1+\cos t)}=\frac{50}{\mathrm{e}} \mathrm{e}^{-\cos t} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{50}{\mathrm{e}} \mathrm{e}^{-\cos t} \times \sin t=0 \text { at } t=\pi \\ & \frac{\mathrm{d}^{2} y}{\mathrm{dt}{ }^{2}}=\frac{50}{\mathrm{e}} \mathrm{e}^{-\cos t} \times \cos t+\frac{50}{\mathrm{e}} \mathrm{e}^{-\cos t} \times \sin ^{2} t \\ & \text { Substitute } t=\pi \rightarrow-50 \Rightarrow \text { max } \end{aligned}$	(B1) (M1) (A1) (A1)		Attempt at product rule Correct
	Total		13	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^1]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

MPC4 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$\begin{aligned} & R=5 \\ & \tan \alpha=\frac{3}{4}(\mathrm{OE}) \quad \alpha=36.9^{\circ}(\text { ISW 216.9 }) \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1A1 } \end{gathered}$	3	$\begin{aligned} & \mathrm{SC} 1 \tan \alpha=\frac{4}{3}, \alpha=53.1^{\circ} \\ & R, \alpha \mathrm{PI} \text { in }(\mathrm{b}) \end{aligned}$
(b)	$\begin{aligned} & \cos (x-\alpha)=\frac{2}{R} \\ & x-\alpha=66.4^{\circ} \\ & x=103.3^{\circ} \\ & x=330.4^{\circ} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1F } \\ \text { A1F } \end{gathered}$	4	accept $330.5^{\circ},-1$ each extra ft on acute α
(c)	$\begin{aligned} & \text { minimum value }=-5 \\ & \cos (x-36.9)=-1 \\ & x=216.9^{\circ} \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \mathrm{~F} \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \end{gathered}$	3	ft on R SC $\cos (x+36.9)$ treat as miscopy 216.9 or better accept graphics calculator solution to this accuracy SC Find max: $\max =5 \text { at }(x+36.9) \text { stated } \quad 1 / 3$ Max $8 / 10$ for work in radians
	Total		10	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$t=0: x=3$	B1	1	
(ii)(b)(i)	$t=14: x=15-12 \mathrm{e}^{-1}$	M1		or $15-12 \mathrm{e}^{\frac{-14}{14}}$
	$=10.6$	A1	2	CAO
	$-5=-12 \mathrm{e}^{-\frac{t}{14}}$	M1		substitute $x=10$; rearrange to form $p=q \mathrm{e}^{-\frac{t}{14}}$
	$\ln \left(\frac{5}{12}\right)=-\frac{t}{14} \quad(\mathrm{OE})$	m1		take lns correctly
	$t=14 \ln \left(\frac{12}{5}\right)$	A1	3	must come from correct working
(ii)	$t=12.256 \ldots \approx 12$ days	B1F	1	ft on a, b if $a>b$; accept $t=12 \mathrm{NMS}$ Accept 12 from incorrect working in b (i) Accept 13 if 12.2 or 12.3 seen
(c)(i)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{14} \times-12 \mathrm{e}^{-\frac{t}{14}}$	M1		differentiate; allow sign error condone $\frac{\mathrm{d} y}{\mathrm{~d} x}$ used consistently
	$=-\frac{1}{14}(x-15)$	m1		Or $\frac{1}{14}\left(12 \mathrm{e}^{-\frac{t}{14}}\right)$ and $12 \mathrm{e}^{-\frac{t}{14}}=15-x$ seen
	$=\frac{1}{14}(15-x)$	A1	3	AG - be convinced CSO
	Alt: $t=-14 \ln \left(\frac{15-x}{12}\right)$	(M1)		attempt to solve given equation for t
	$\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{-14\left(-\frac{1}{12}\right)}{\left(\frac{15-x}{12}\right)}$	(m1)		differentiate wrt x, with $\frac{1}{\frac{15-x}{12}}$ seen; OE
	$\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{14}{15-x} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{1}{14}(15-x)$ Alt: (backwards) $\int \frac{\mathrm{d} x}{15-x}=\int \frac{\mathrm{d} t}{14}= \pm 14 \ln (15-x)=t+c$	(A1) (M1)	(3)	AG - be convinced
	Use $(0,3):-14 \ln (15-x)+14 \ln 12=t$	(m1)		
	Solve for x : $x=15-12 \mathrm{e}^{-\frac{t}{14}}$	(A1)	(3)	All steps shown
(ii)	rate of growth $=0.5$ (cm per day)	B1	1	$\text { Accept } \frac{7}{14}$
	Total		11	

MPC4 (cont)

MPC4 (cont)

MPC4 (cont)

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
-x EE	deduct x marks for each error	G	graph
NMS	no method shown	C	candidate
PI	possibly implied	Sf	significant figure(s)
SCA	substantially correct approach	Dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

Q	Solution	Marks	Total	Comments
1(a)	$\begin{aligned} & 3=k(3+x+3-x) \\ & k=\frac{1}{2} \end{aligned}$	M1 A1	2	OE $\frac{A}{3-x}+\frac{B}{3+x} \Rightarrow 6 A=36 B=3$ or eg put $x=0, \frac{3}{9}=k\left(\frac{1}{3}+\frac{1}{3}\right) \Rightarrow k=\frac{1}{2}$
(b)	$\begin{aligned} & \int_{1}^{2} \frac{3}{9-x^{2}} \mathrm{~d} x=-\frac{1}{2} \ln (3-x)+\frac{1}{2} \ln (3+x) \\ & =\frac{1}{2}((\ln 5-\ln 1)-(\ln 4-\ln 2))=\frac{1}{2} \ln \left(\frac{5}{2}\right) \end{aligned}$	M1 A1F A1F	3	$a \ln (3 \pm x)$ ft on k accept $\ln \left(\frac{10}{4}\right)$ ft only for sign error in integral: $\frac{1}{2} \ln \left(\frac{5}{8}\right)$
	Total		5	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\begin{aligned} & t=\frac{1}{2} \quad x=2 \times \frac{1}{2}+\frac{1}{\left(\frac{1}{2}\right)^{2}} \quad y=2 \times \frac{1}{2}-\frac{1}{\left(\frac{1}{2}\right)^{2}} \\ & x=5 \quad y=-3 \end{aligned}$	M1 A1	2	
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} t}=2+2 t^{-3} \quad \frac{\mathrm{~d} x}{\mathrm{~d} t}=2-2 t^{-3}$	M1A1		2 and $\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{1}{t^{2}}\right)$ attempted in both derivatives
	$t=\frac{1}{2} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2+\frac{2}{1 / 8}}{2-\frac{2}{1 / 8}}=-\frac{9}{7}$	M1 A1		use chain rule; expressions can be in terms of t or evaluated CAO or any equivalent fraction (not decimals)
	$y+3=-\frac{9}{7}(x-5)$	B1F	5	ft on x, y and gradient if $y=m x+c$ used, c must be found correctly and the equation must be rewritten
(b)	$x-y=\frac{2}{t^{2}} \quad x+y=4 t$	M1		either correct expression or both of $x-y=4 t$ and $x+y=\frac{2}{t^{2}}$
	$\frac{2}{(x-y)}=\left(\frac{x+y}{4}\right)^{2}$	M1		eliminate t
	$32=(x-y)(x+y)^{2}$	A1	3	or $(x-y)(x+y)^{2}=\frac{2}{t^{2}} \times(4 t)^{2}=32$ $k=32$ alone, no marks
	Total		10	
6	$3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y-4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$			attempt implicit differentiation
		A1		product
		A1		chain constant
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{3}{2}$	A1	5	CSO
	ALTERNATIVE METHOD $x=\frac{2}{2} y+\frac{4}{2 y}$	(M1)		solve for $x=$ expression in y and differentiate with respect to y
	$\overline{\mathrm{d} y}=\frac{2}{3}-\frac{1}{3 y^{2}}$	(A1A1)		
	$y=1, \frac{\mathrm{~d} x}{\mathrm{~d} y}=\frac{2}{3}-\frac{4}{3}$	(M1)		substitute $y=1$
	$\frac{\mathrm{d} x}{\mathrm{~d} y}=-\frac{3}{2}$	(A1)		CSO
	Total		5	

* Comments for 7(b)(ii)

If hence ignored, so working in sines and cosines, must simplify as far as:

$\cos ^{2} x=\sin ^{2} x$		$\cos ^{2} x=\frac{1}{2}$	or	$\sin ^{2} x=\frac{1}{2}$	for M1
$\cos 2 x=0$	or	$\cos x= \pm \frac{1}{\sqrt{2}}$		$\sin x= \pm \frac{1}{\sqrt{2}}$	for A1

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^2]
Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

Q	Solution	Marks	Total	Comments
2(a)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=4 \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\frac{1}{2 t^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{2 t^{2}} \times \frac{1}{4} \end{aligned}$	M1 A1 M1		differentiate. 4; $a t^{-2}$ seen both derivatives correct use chain rule candidates' $\frac{\mathrm{d} y}{\mathrm{~d} t} / \frac{\mathrm{d} x}{\mathrm{~d} t}$
	$t=\frac{1}{2} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{2}$	A1	4	cso
(b)	gradient of normal $=2$ $(x, y)=(5,0) \quad \frac{y}{x-5}=2$	$\begin{gathered} \text { B1F } \\ \text { M1 } \\ \text { A1F } \end{gathered}$	3	F if gradient $\neq \pm 1$ calculate and use (x, y) on normal F on gradient of normal ACF
(c)	$\begin{aligned} & x-3=4 t \quad \text { or } \quad y+1=\frac{1}{2 t} \\ & (x-3)(y+1)=2 \end{aligned}$	B1 M1 A1	3	or $t=\frac{x-3}{4}$ or $\frac{1}{t}=2(y+1)$ eliminate t; allow one error accept $y=\frac{1}{\frac{2(x-3)}{4}}-1$ ACF SC allow marks for part (c) if done in part (a)
	Total		10	
3(a)	$\sin (x+2 x)=\sin x \cos 2 x+\cos x \sin 2 x$	M1		
	$=\sin x\left(1-2 \sin ^{2} x\right)+\cos x(2 \sin x \cos x)$	B1B1		double angles; ACF ISW condone missing x
	$=\sin x\left(1-2 \sin ^{2} x\right)+2 \sin x\left(1-\sin ^{2} x\right)$	A1		all in $\sin x$, correct expression
	$=3 \sin x-4 \sin ^{3} x$	A1	5	CSO AG
(b)	$\begin{aligned} & \sin ^{3} x=a \sin x+b \sin 3 x \\ & \int \sin ^{3} x \mathrm{~d} x=-a \cos x-\frac{b}{3} \cos 3 x \end{aligned}$	M1 A1F		$\begin{aligned} & \text { attempt to solve for } \sin ^{3} x \text { where } a \neq 0 \\ & \text { and } b \neq 0 \\ & \text { either integral correct } \\ & \text { F on } a, b \end{aligned}$
	$\int \sin ^{3} x \mathrm{~d} x=\frac{1}{4}\left(-3 \cos x+\frac{1}{3} \cos 3 x\right)(+C$	A1	3	CAO alternative method by parts (see end of mark scheme)
	Total		8	

MPC4 (cont)

MPC4 (cont)

MPC4 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} & \frac{2}{\left(x^{2}-1\right)}=\frac{A}{x-1}+\frac{B}{x+1} \\ & 2=A(x+1)+B(x-1) \\ & x=1 \quad x=-1 \end{aligned}$	M1 m1		use two values of x or equate coefficients and solve $A+B=0$ and $A-B=2$
	$A=1 \quad B=-1$	A1	3	both A and B
(b)	$\int \frac{2}{x^{2}-1} \mathrm{~d} x=p \ln (x-1)+q \ln (x+1)$	M1		In integrals
	$=\ln (x-1)-\ln (x+1)$	A1F	2	F on A and B condone missing brackets
(c)	$\int \frac{\mathrm{d} y}{y}=\int \frac{2}{3\left(x^{2}-1\right)} \mathrm{d} x$	M1		separate and attempt to integrate on one side
	$\begin{aligned} & \ln y=\frac{1}{3}(\ln (x-1)-\ln (x+1)) \quad(+C) \\ & (3,1) \quad \ln 1=\frac{1}{3}(\ln 2-\ln 4)+C \\ & 3 \ln y=\ln (x-1)-\ln (x+1)-(\ln 2-\ln 4) \end{aligned}$	A1 A1F m1		left hand side F from part (b) on right hand side use $(3,1)$ to attempt to find a constant
	$3 \ln y=\left(\ln \left(\frac{x-1}{x+1}\right)+\ln 2\right)$			
	$\begin{aligned} & \ln y^{3}=\ln \left(\frac{2(x-1)}{x+1}\right) \\ & y^{3}=\frac{2(x-1)}{x+1} \end{aligned}$	A1	5	CSO AG
	Total		10	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$A B^{2}=(5-3)^{2}+(3--2)^{2}+(0-1)^{2}$ $A B=\sqrt{30}$	M1 A1	2	use $\pm(\overrightarrow{O B}-\overrightarrow{O A})$ in sum of squares of components allow one slip in difference accept 5.5 or better
(b)	$\begin{aligned} & {\left[\begin{array}{r} 2 \\ 5 \\ -1 \end{array}\right] \cdot\left[\begin{array}{r} 1 \\ 0 \\ -3 \end{array}\right]=2+3=5} \\ & \cos \theta=\frac{5}{\sqrt{30 \sqrt{10}}} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1F } \\ \text { M1 } \end{gathered}$		$\pm \overrightarrow{A B} \bullet$ direction l evaluated condone one component error 5 or - 5 F on either of candidates' vectors use $\|a\|\|b\| \cos \theta=a \bullet b$; values needed
	$\theta=73^{\circ}$	A1	5	CAO (condone 73.2, 73.22 or 73.22...)
(c)	$\begin{aligned} & \overrightarrow{A C}=\left[\begin{array}{r} 5+\lambda \\ 3 \\ -3 \lambda \end{array}\right]-\left[\begin{array}{c} 3 \\ -2 \\ 1 \end{array}\right]=\left[\begin{array}{c} 2+\lambda \\ 5 \\ -1-3 \lambda \end{array}\right] \\ & (2+\lambda)^{2}+5^{2}+(-1-3 \lambda)^{2}=30 \\ & 10 \lambda^{2}+10 \lambda=0 \\ & (\lambda=0 \text { or }) \lambda=-1 \\ & (\lambda=0 \Rightarrow(5,3,0) \text { is } B) \end{aligned}$	M1 A1 m1 A1		for $\overrightarrow{O C}-\overrightarrow{O A}$ or $\overrightarrow{O A}-\overrightarrow{O C}$ with $\overrightarrow{O C}$ in terms of λ condone one component error
	$\lambda=-1 \Rightarrow C \text { is }(4,3,3)$	A1	5	condone $\left[\begin{array}{l}4 \\ 3 \\ 3\end{array}\right]$
	Total		12	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
8(a)(i)	$\begin{gathered} p \frac{\mathrm{~d} x}{\mathrm{~d} t}=q \\ \frac{\mathrm{~d} x}{\mathrm{~d} t}=-k x \end{gathered}$	M1 A1	2	where p and q are functions in any correct combination
(a)(ii)	$-500=-k 20000 \text { or } 500=k 20000$	M1		condone sign error or missing 0 k can be on either side of the equation
	$k=\frac{5}{200} \quad(=0.025)$	A1	2	CSO both (a)(i) and (a)(ii)
(b)(i)	$A=1300$	B1	1	
(b)(ii)	$100>A \mathrm{e}^{-0.05 t}$	M1		condone $=$ for > ; condone 99 for 100
	$\ln \left(\frac{100}{A}\right)>-0.05 t$	m1		take logs correctly condone 0.5
	$t>51.3$	A1		or by trial and improvement (see end of mark scheme)
	population first exceeds 1900 in 2059	A1F	4	F if M1 m1 earned and $\mathrm{t}>0$ following A
	Total		9	
	TOTAL		75	

MPC4 (cont)
Alternative methods permitted in the mark scheme

Q	Solution	Marks	Total	Comments
1(b)(ii)	ALTERNATIVE METHOD 1 $(3 x+2)$ is a factor use factor theorem $\begin{aligned} & \mathrm{f}\left(\frac{1}{3}\right)=0 \Rightarrow(3 x-1) \text { is a factor } \\ & \mathrm{f}(x)=(3 x+2)(3 x-1)(a x+b) \\ & \mathrm{f}(x)=(3 x+2)(3 x-1)(3 x-1) \end{aligned}$ ALTERNATIVE METHOD 2 $(3 x+2)$ is a factor divide $27 x^{3}-9 x+2$ by $(3 x+2)$ $\begin{aligned} & 9 x^{2}-6 x+1 \\ & \mathrm{f}(x)=(3 x+2)(3 x-1)(3 x-1) \end{aligned}$ SPECIAL CASE $(3 x+2)(3 x-1)(a x+b)$	B1 M1 A1 A1 B1 M1 A1 A1	4 4 2	PI use factor theorem or algebraic division to find another factor PI by division complete division to $a x^{2}+b x+c$
2(a)	$\begin{aligned} & y=\frac{2}{x-3}-1 \text { and differentiate } \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{(x-3)^{2}} \\ & x=5 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-2}{(5-3)^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{2} \end{aligned}$	M1 A1 m1 A1	4	differentiate expression in y and x correct find and therefore use x (and y)

MPC4 (cont)

Q	Solution	Marks	Total	Comments
3(b)	ALTERNATIVE METHOD 1 $\begin{aligned} & \int \sin ^{3} x \mathrm{~d} x=\int \sin ^{2} x \sin x \mathrm{~d} x \\ & = \\ & -\sin ^{2} x \cos x-\int-2 \cos x \sin x \cos x \mathrm{~d} x \\ & =-\sin ^{2} x \cos x-\frac{2}{3} \cos ^{3} x \quad(+C) \end{aligned}$ ALTERNATIVE METHOD 2 $\begin{aligned} & \int \sin ^{3} x \mathrm{~d} x=\int \sin ^{2} x \mathrm{~d}(-\cos x) \\ & =\int-\left(1-\cos ^{2} x\right) \mathrm{d}(\cos x) \\ & =-\cos x+\frac{1}{3} \cos ^{3} x \quad(+C) \end{aligned}$ ALTERNATIVE METHOD 3 $\begin{aligned} & \int \sin x \sin ^{2} x \mathrm{~d} x \\ & \int \sin x\left(1-\cos ^{2} x\right) \mathrm{d} x \\ & =-\cos x+\frac{1}{3} \cos ^{3} x \quad(+C) \end{aligned}$	M1 A2 M1 A2 M1 A2	3	identify parts and attempt to integrate condone sign error this form and attempt to integrate
4(a)(ii)	$(81-16 x)^{\frac{1}{4}}=81^{\frac{1}{4}}+\frac{1}{4} 81^{-\frac{3}{4}}(-16 x)+\frac{1}{4}($ $=\left(3-\frac{4}{27} x-\frac{8}{729} x^{2}\right)$	$\begin{gathered} \left.\frac{3}{4}\right) \frac{1}{2} 81^{-7} \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	$-16 x$ 3	using $(a+b x)^{n}$ from FB condone one error CSO completely correct
8(b)(ii)	$\begin{aligned} & t=51 \rightarrow 101.5 \\ & t=52 \rightarrow 96.6 \\ & \Rightarrow 51<t<52 \\ & \text { population first exceeds } 1900 \text { in } 2059 \end{aligned}$	M1 A3	4	$t=51$ or $t=52$ considered CAO

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^3]
Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

MPC4 (cont)

MPC4 (cont)

MPC4 (cont)

Q	Solution	Marks	Total	Comments
(a)	$x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$		Product rule used. Allow 1 error
	$+3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1		Chain rule
	$=2$	B1		RHS and equation with no spurious $\frac{d y}{d x}$ unless recovered.
	$(2,1), \quad 4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$	M1		Substitute (2,1)
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2}{7}$	A1	6	CSO
(b)	$\frac{\mathrm{d} y}{\mathrm{~d}}=0 \Rightarrow$	M1		Derivative $=0$ used
	$x y=1$	A1		OE
	$x^{2} \times \frac{1}{x}+\frac{1}{x^{3}}=2 x+1$	m1		Use $x y=k$ to eliminate y on LHS
	$\frac{1}{x^{3}}=x+1$	A1	4	Answer given; CSO
	Total		10	
(i)	$\int \frac{\mathrm{d} x}{\mathrm{e}^{\frac{1}{2} x}}=\int-k t \mathrm{~d} t$	B1		Separate; condone missing integral signs
	$-2 \mathrm{e}^{-\frac{1}{2} x}=-k \frac{t^{2}}{2} \quad(+C)$	B1B1	3	
(ii)	$-2 \mathrm{e}^{-\frac{1}{2} x}=-k \frac{t^{2}}{2}-2 \mathrm{e}^{-3}$	M1		Use (6,0) to find constant
	$\ln \left(\mathrm{e}^{-\frac{1}{2} x}\right)=\ln \left(k \frac{t^{2}}{4}+\mathrm{e}^{-3}\right)$	M1		Take logarithms correctly; condone one side negative. Must have a constant.
	$\begin{aligned} -\frac{1}{2} x & =\ln \left(k \frac{t^{2}}{4}+\mathrm{e}^{-3}\right) \\ x & =-2 \ln \left(\frac{k t^{2}}{4}+\mathrm{e}^{-3}\right) \end{aligned}$	A1	3	Answer given; CSO
$\begin{array}{r} \text { (D) } \\ \text { (i) } \end{array}$	$t=10 \quad x=-2 \ln \left(\frac{0.004 \times 10^{2}}{4}+\mathrm{e}^{-3}\right)$	M1		
	$=3.8 \Rightarrow 3800$	A1	2	CAO
(ii)	$x=0 \quad \underline{0.004 \times t^{2}}+\mathrm{e}^{-3}=1$	M1		
	$t=30.8$	A1	2	CAO Treat 0.04 or 0.0004 as misread (-1)
	Total		10	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
8(a) (i)	$\overrightarrow{A B}=\left[\begin{array}{r} 3 \\ 1 \\ -2 \end{array}\right]-\left[\begin{array}{r} 2 \\ 1 \\ -1 \end{array}\right]=\left[\begin{array}{r} 1 \\ 0 \\ -1 \end{array}\right]$	M1 A1	2	$\pm(\overrightarrow{O A}-\overrightarrow{O B})$ A0 if answer as coordinates
(ii)	$\overrightarrow{O B} \bullet \overrightarrow{A B}=3 \times 1+1 \times 0+(-2) \times(-1)=5$	M1		Evaluate to single value
	$\cos \theta=\frac{\overrightarrow{O B} \bullet \overrightarrow{A B}}{\|\overrightarrow{O B}\| \times\|\overrightarrow{A B}\|}$	M1		Use formula for $\cos \theta$ with any 2 vectors and at least one of the corresponding modulii 'correct'
	$\cos \theta=\frac{5}{\sqrt{7 \times 2} \sqrt{2}}=\frac{5}{2 \sqrt{7}}$	A1		CSO; AG so need to see intermediate step eg $\frac{5}{\sqrt{7 \times 2} \sqrt{2}}$ or $\frac{5}{\sqrt{28}}$
	Alternative cos rule attempted with \cos B cos rule correct with \cos B	(M1) (A1) (A2)	4	
(b)	$\mathbf{r}=\left[\begin{array}{r} 6 \\ 2 \\ -4 \end{array}\right]+\lambda\left[\begin{array}{r} 1 \\ 0 \\ -1 \end{array}\right]$	M1 A1F	2	$\overrightarrow{O C}+\lambda \overrightarrow{A B}$. Allow one slip ft on $\overrightarrow{A B}$; needs \mathbf{r} or $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
(c)	$\begin{gathered} \overrightarrow{O D} \cdot \overrightarrow{A B}=\left[\begin{array}{r} 6+\lambda \\ 2 \\ -4-\lambda \end{array}\right] \cdot\left[\begin{array}{r} 1 \\ 0 \\ -1 \end{array}\right] \\ 6+\lambda+4+\lambda=0 \\ \lambda=-5 \\ D \text { is }(1,2,1) \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { m1 } \\ \text { A1F } \\ \text { A1 } \end{gathered}$		ft on equation of line CAO
	Alternative $\left[\begin{array}{l} a \\ b \\ c \end{array}\right] \cdot\left[\begin{array}{r} 1 \\ 0 \\ -1 \end{array}\right]=a-c=0$	(M1)		Let D be (a, b, c) Scalar product evaluated and equated to 0
	$\begin{aligned} & a=6+\lambda, \quad b=2, \quad c=-4-\lambda \\ & \begin{array}{l} a+c=2 \\ a=1 \quad b=2 \quad c=1 \end{array} \end{aligned}$	(m1) (A1) (A1)	4	Use equation of line
	Total		12	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

Q	Solution	Marks	Total	Comments
1(a)	$\begin{aligned} f\left(\frac{1}{3}\right) & =3 \times \frac{1}{27}+8 \times \frac{1}{9}-3 \times \frac{1}{3}-5 \\ & =-5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Use $\frac{1}{3}$ in evaluating $\mathrm{f}(x)$ No ISW Evidence of Remainder Theorem
(b)	$\begin{gathered} \frac{x^{2}+3 x}{3 x-1} \begin{array}{c} 3 x^{3}+8 x^{2}-3 x-5 \\ 3 x^{3} \frac{-x^{2}}{9 x^{2}-3 x} \\ 9 x^{2}-3 x \end{array} \end{gathered}$	M1		Division with x^{2} and an x term seen; $x^{2}+p x$
	$\begin{aligned} & a=1 \quad b=3 \quad \text { or } x^{2}+3 x+\frac{c}{3 x-1} \\ & c=-5 \end{aligned}$	A1 B1		Explicit or in expression Condone $+\frac{-5}{3 x-1}$
	Alternative $(3 x-1)\left(x^{2}+p x\right)-5$	(M1)		Split fraction and attempt factors
	$\begin{aligned} & \hline 3 x-1-\frac{3 x-1}{x^{2}+3 x} \\ &-\frac{5}{3 x-1} \end{aligned}$	(A1) (B1)		$\begin{aligned} & a=1 \quad b=3 \\ & c=-5 \end{aligned}$
	Alternative $\begin{aligned} & \mathrm{f}(x)=3 a x^{3}+(3 b-a) x^{2}-b x+c \\ & a=1 \quad b=3 \\ & c=-5 \end{aligned}$	(M1) (A1) (B1)		Multiply by $(3 x-1)$ and attempt to collect terms
	Alternative $\begin{aligned} & \mathrm{f}(x)=\left(a x^{2}+b x\right)(3 x-1)+c \\ & x=0 \Rightarrow c=-5 \\ & x=1 \Rightarrow 2 a+2 b+c=3 \\ & x=2 \Rightarrow 20 a+10 b+c=45 \\ & a=1 \quad b=3 \end{aligned}$	(M1) (B1) (A1)	3	Multiply by $(3 x-1)$ and attempt to find a, b, c : substitute 3 values of x and form 3 simultaneous equations, and attempt to solve; or substitute 3 values of x into given equation
	Total		5	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
2(a)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{t^{2}} \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=1-\frac{1}{2 t^{2}}$	B1B1		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-\frac{1}{2 t^{2}}}{-\frac{1}{t^{2}}} \quad\left(=\frac{2 t^{2}-1}{-2}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Their $\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$; condone 1 slip CSO; ISW
	Alternative $\begin{aligned} & y=\frac{1}{x}+\frac{x}{2} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{x^{2}}+\frac{1}{2} \end{aligned}$	(B1) (B1)		
	Substitute $x=\frac{1}{t}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=-t^{2}+\frac{1}{2}$	(M1) (A1)	4	CSO
(b)	$t=1 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{2}$	M1		Substitute $t=1$ in $\frac{\mathrm{f}(t)}{\mathrm{g}(t)} \not \equiv k$
	$\begin{aligned} & m_{T}=-\frac{1}{2} \Rightarrow m_{n}=2 \\ & (x, y)=\left(1, \frac{3}{2}\right) \end{aligned}$	$\begin{gathered} \text { B1F } \\ \text { B1 } \end{gathered}$		F on $m_{T} \neq 0$; if in $t \rightarrow$ numerical later PI $\frac{3}{2}=m(\times 1)+c$
	$\left(y-\frac{3}{2}\right)=2(x-1) \text { or } y=2 x+c, c=-\frac{1}{2}$	A1	4	ISW, CSO (a) and (b) all correct
(c)	$y=\frac{1}{\frac{1}{t}}+\frac{1}{2} \times \frac{1}{t}$	M1		Attempt to use $t=\frac{1}{x}$ to eliminate t t, or equivalent
	$=\frac{1}{x}+\frac{x}{2}$	A1		
	$2 x y=2+x^{2} \Rightarrow x^{2}-2 x y+2=0$	A1		Correct algebra to AG with $k=2$ allow $k=2$ stated $k=2$, no working or from $\left(1, \frac{3}{2}\right): 0 / 3$
	$\begin{aligned} & \text { Alternative } \quad \text { or } \\ & \left.\left(\frac{1}{t}\right)^{2}-2\left(\frac{1}{t}\right)\left(t+\frac{1}{2 t}\right) \right\rvert\, \quad x y=\frac{1}{t}\left(t+\frac{1}{2 t}\right) \end{aligned}$	(M1)		Substitute and multiply out
	$\begin{array}{l\|l} =-2 & =1+\frac{x^{2}}{2} \end{array}$	(A1)		Eliminate t
	$\Rightarrow x^{2}-2 x y+2=0$	(A1)	3	Conclusion, $k=2$
			11	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$(1-x)^{-1}=1+(-1)(-x)+\frac{1}{2}(-1 .-2)(-x)^{2}$	M1		$1 \pm x+k x^{2}$
(b)(i)	$=1+x+x^{2}$	A1	2	Fully simplified
	$3 x-1=A(2-3 x)+B(1-x)$	M1		
	$x=1 \quad x=\frac{2}{3}$	m1		Use 2 values of x or equate coefficients and solve $-3 A-B=3 \quad 2 A+B=-1$ condone coefficient errors
	$A=-2 \quad B=3$	A1	3	Both values
				NMS $3 / 3$ if both correct, $1 / 3$ if one correct
(ii)	$\left(\frac{3 x-1}{(1-x)(2-3 x)}=\frac{-2}{1-x}+\frac{3}{2-3 x}\right)$			
	$\frac{-2}{1-x}=-2-2 x-2 x^{2}$	B1F		F on $(1-x)^{-1}$ and A
	$\frac{1}{2-3 x}=\frac{1}{2}\left(1-\frac{3}{2} x\right)^{-1}$	B1		
	$=(p)\left(1+k x+(k x)^{2}\right)$	M1		$p, k=\text { candidate's } \frac{1}{2}, \frac{3}{2}, k \neq \pm 1$
	$=(p)\left(1+\frac{3}{2} x+\frac{9}{4} x^{2}\right)$	A1		Use (a) or start binomial again; condone missing brackets, and one sign error
	$\frac{3 x-1}{(1-x)(2-3 x)}=-2(1-x)^{-1}+3(2-3 x)^{-1}$	M1		Valid combination of both expansions
	$=-\frac{1}{2}+\frac{1}{4} x+\frac{11}{8} x^{2}$	A1		CSO
	Alternative $(2-3 x)^{-1}=\frac{1}{2}\left(1-\frac{3}{2} x\right)^{-1}$	(B1)		$\int k=\text { candidate's } \frac{3}{2} \quad k \neq \pm 1$
	$(1-k x)^{-1}=1+k x+(k x)^{2}$	(M1)		Use (a) or start binomial again; condone missing brackets and one
	$=1+\frac{3}{2} x+\frac{9}{4} x^{2}$	(A1)		error
	$\frac{3 x-1}{(1-x)(2-3 x)}=(3 x-1)(1-x)^{-1}(2-3 x)^{-1}$	(M1)		$(3 x-1) \times$ both expansions
	$\frac{3 x-1}{(1-x)(2-3 x)}=-\frac{1}{2}+\frac{1}{4} x+\frac{11}{8} x^{2}$	(m1) (A1)		Multiply out; collect terms to form $a+b x+c x^{2}$
		(A1)	6	CSO
	Alternative for $(2-3 x)^{-1}$			Using $(a+b x)^{n}$
	$2^{-1}+(-1)(2)^{-2}(-3 x)+\frac{(-1)(-2)(2)^{-3}(-3 x)^{2}}{2}$	(M1)		Condone missing brackets, and 1 error
	$=\frac{1}{2}+\frac{3}{4} x+\frac{9}{8} x^{2}$	$\begin{aligned} & \text { (A1) } \\ & \text { (A1) } \end{aligned}$		First two terms x^{2} term

MPC4 (cont)

Q	Solution	Marks	Total	Comments
(c)	$\begin{aligned} & -2<3 x<2 \\ & \Rightarrow-\frac{2}{3}<x<\frac{2}{3} \end{aligned}$	M1 A1	2	PI, or any equivalent form Condone \leq; accept $\pi \geq \frac{2}{3}$ or $x \geq-\frac{2}{3}$ CSO; allow $\| \pm x\| \leq \frac{2}{3}$, or $x<\frac{2}{3}$ and $x>-\frac{2}{3}$
	Total		13	
4(a)(i)	$A=12499$	B1	1	Stated in (i) or (ii)
	$k^{36}=\frac{7000}{\text { their } A}$	M1		$p=\frac{7000}{12499}=0.560044803$
	$\left.\begin{array}{l} k=\sqrt[36]{0.56(00448 \ldots)}=0.9840251(26) \\ \text { or } \quad(0.56(00448 \ldots))^{\frac{1}{36}} \\ \text { or } k=\sqrt[36]{\frac{7000}{12499}} \\ k=0.984025 \end{array}\right\}$	A1	2	Correct expression for k or $7^{\text {th }}$ dp seen. $\begin{array}{ll} k=10^{\frac{1}{36} \log p} & \text { or } k=10^{-0.00699 . . .} \\ k=\mathrm{e}^{\frac{1}{36} \ln p} & \text { or } k=\mathrm{e}^{-0.016103 . . .} \end{array}$ AG
(b)	$k^{t}=\frac{5000}{\text { their } A}$	M1		$\frac{5000}{12499}=0.400032 \ldots ; \text { condone } 4999$
	$\begin{array}{r} t \log (k)=\log \left(\frac{5000}{A}\right) \quad(t=56.89) \\ n=57 \end{array}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$		Correct use of logs n integer; $n=57 \quad$ CAO
	Alternative ; trial and improvement on $\begin{aligned} & 5000=12499 \times 0.984025^{t} \\ & 2 \text { values of } t \geq 40 \\ & 1 \text { value of } t \quad 50<t<60 \\ & n=57 \end{aligned}$	(M1) (m1) (A1)	3	
	Special case, answer only $\begin{array}{ll} n=57 & 3 / 3 \\ n=56 & 0 / 3 \\ n=56.9 & 2 / 3 \end{array}$			
	Total		6	

MPC4 (cont)

MPC4 (cont)

MPC4 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\int x \mathrm{~d} x=\int 150 \cos 2 t \mathrm{~d} t$	B1		Correct separation; condone missing \int signs; must see $\mathrm{d} x, \mathrm{~d} t$
	$\frac{1}{2} x^{2}=75 \sin 2 t \quad(+C)$	B1B1		Correct integrals Accept $\frac{1}{2} \times 150$
	$\left(20, \frac{\pi}{4}\right) \quad \frac{1}{2} \times 20^{2}=75 \sin \left(2 \times \frac{\pi}{4}\right)+C$	M1		C present. Use $\left(20, \frac{\pi}{4}\right)$ to find C
	$C=125$	A1F		F on $x^{2}=k \sin 2 t$
	$x^{2}=150 \sin 2 t+250$	A1	6	Correct integrals and evaluation of C
(b)(i)	$t=13 \quad x^{2}=150 \sin 26+250(=364.38)$	M1		Evaluate $x^{2}=\mathrm{f}(13) ; x^{2}=k \sin 2 t+c$
		A1	2	AWRT
(ii)	$x=11 \quad \sin 2 t=-\frac{129}{1 г 0} \quad(=-0.86)$			
	or $2 t=-1.035 . ., 4.176 .$.			
	$t=2.1$ (seconds)	A1	2	AWRT
	Total		10	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
Vor ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i) (ii) (b)	$\begin{aligned} & \mathrm{f}(-1)=-15+19-4=0 \\ & \mathrm{f}\left(\frac{2}{5}\right) \\ & \left(15 \times \frac{8}{125}+19 \times \frac{4}{25}-4\right)=0 \Rightarrow \text { factor } \\ & (x+1) \text { is a factor } \end{aligned}$ Third factor is $(3 x+2)$ $\frac{15 x^{2}-6 x}{\mathrm{f}(x)}=\frac{3 x(5 x-2)}{(x+1)(5 x-2)(3 x+2)}$ $=\frac{3 x}{(x+1)(3 x+2)}$	B1 M1 A1 B1 M1 A1 M1 A1	1	evaluate or complete division leading to a numerical remainder Or decimal equivalent $(0.96+3.04-4)$ or zero remainder \Rightarrow factor Stated or implied. Any appropriate method to find third factor $\left\{\begin{array}{l} (5 x-2)\left(3 x^{2} \pm 5 x \pm 2\right)+\text { attempt } \\ \text { to factorise } \\ \text { Factorise numerator correctly } \\ \text { and attempt to simplify } \end{array}\right.$ CSO no ISW
	Total		8	
2(a) (b)(i) (ii) (c)	$R=\sqrt{10}$ $\tan \alpha=3$ $\alpha=1.249 \quad$ ignore extra out of range $\begin{aligned} & \text { minimum value }=-\sqrt{10} \\ & \cos (x-\alpha)=-1 \\ & x=4.391 \end{aligned}$ $\cos (x-\alpha)=\frac{2}{\sqrt{10}}$ $x-\alpha= \pm 0.886$ ignore extra out of range $\begin{array}{cc} x=0.36296 . . & 2.13512 . . \\ x=0.363 & 2.135 \end{array}$	B1 M1 A1 B1F M1 A1F M1 A1 A1F A1		Accept $R=3.16$ or better OE AWRT 1.25 SC $\alpha=0.322$ B1 radians only F on R AWRT 4.39 51.56° or .. . 57° or better Two values, accept 2dp and condone 5.4 condone use of degrees F on $x-\alpha$, either value. AWRT CSO 3dp or better
	Total		10	
(c)	$\begin{aligned} & \text { Alternative } \\ & 10 \sin ^{2} x-12 \sin x+3=0 \\ & \sin x=\text { two numerical answers } \\ & -1 \leq \text { ans } \leq 1 \\ & x=\text { one correct answer } \\ & x=0.363 \quad 2.135 \end{aligned}$	M1 A1F A1F A1		Or equivalent quadratic using $\cos x$ (ie $\sin ^{2} x+\cos ^{2} x=1$ used) Or equivalent using $\cos x$ CSO 3 dp or better

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
3(a)(i) \\
(ii) \\
(b)
\end{tabular} \& \[
\begin{aligned}
(1+x)^{\frac{1}{3}} \& =1 \pm \frac{1}{3} x+k x^{2} \\
\& =1-\frac{1}{3} x+\frac{2}{9} x^{2} \\
\left(1+\frac{3}{4} x\right)^{-\frac{1}{3}} \& =1-\frac{1}{3} \times \frac{3}{4} x+\frac{2}{9}\left(\frac{3}{4} x\right)^{2} \\
\& =1-\frac{1}{4} x+\frac{1}{8} x^{2} \\
\& =4\left(1-\frac{1}{4} x+\frac{1}{8} x^{2}\right) \\
\sqrt[3]{\frac{256}{4+3 x}} \& =k\left(1+\frac{3}{4} x\right)^{-\frac{1}{3}} \\
\& =4-x+\frac{1}{2} x^{2} \quad \text { or } \\
a=4 \quad b \& =-1 \quad c=\frac{1}{2}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1F \\
A1
\end{tabular} \& 2

2
2

3 \& | $1 \pm \frac{1}{3} x+k x^{2}$ |
| :--- |
| x replaced by $\frac{3}{4} x$ |
| or start binomial again; condone missing brackets |
| $k \neq 1$ |
| F on (a)(ii) $k=4$, accept $\sqrt[3]{64}$ or $64^{\frac{1}{3}}$ |
| CSO fully simplified |
| Be convinced |

\hline \& Total \& \& 7 \&

\hline 4(a)

(b) \& $$
\begin{array}{ll}
10 x^{2}+8=2(x+1)(5 x-1)+ \\
& A(5 x-1)+B(x+1) \\
x=-1 & x=\frac{1}{5} \\
A=-3 & B=7
\end{array}
$$

\[
$$
\begin{gathered}
\int \frac{10 x^{2}+8}{(x+1)(5 x-1)} \mathrm{d} x=\int 2-\frac{3}{x+1}+\frac{7}{5 x-1} \mathrm{~d} x \\
=2 x+C \\
-3 \ln (x+1)+\frac{7}{5} \ln (5 x-1)
\end{gathered}
$$

\] \& | M1 |
| :--- |
| A1 |
| m1 |
| A1 |
| M1 |
| B1 |
| M1 |
| A1F | \& 4

4 \& | A and B terms correct |
| :--- |
| Use two values of x to find A and B, or set up and solve $\begin{aligned} & 8+5 A+B=0 \\ & -2-A+B=8 \end{aligned}$ |
| SC1 NWS $A \& B$ correct $4 / 4$ |
| SC2 NWS A or B correct $1 / 4$ |
| Use the partial fractions $a \ln (x+1)+b \ln (5 x-1)$ |
| condone missing brackets |
| F on A and B |

\hline \& Total \& \& 8 \&

\hline 5 \& \[
$$
\begin{aligned}
& x^{2}+x y=\mathrm{e}^{y} \\
& 2 x+y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& (-1,0) \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=-1
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| B1 |
| A1 | \& 5 \& | $2 x$ |
| :--- |
| Use product rule |
| RHS |
| CSO |

\hline \& Total \& \& 5 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 6(a)(i) \& \[
\begin{aligned}
\& \sin 2 \theta=2 \sin \theta \cos \theta \\
\& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 2 \& OE condone use of \(x\) etc, but variable must be consistent \\
\hline (ii) \& \begin{tabular}{l}
\[
\sin \theta=\frac{4}{5} \Rightarrow \sin 2 \theta=2 \times \frac{4}{5} \times \frac{3}{5}=\frac{24}{25}
\] \\
or
\[
2 \times \sin \left(\cos ^{-1} \frac{3}{5}\right) \times \frac{3}{5}
\]
\end{tabular} \& B1 \& \& \begin{tabular}{l}
AG \\
Use of \(106.26^{\circ} \ldots\) B0
\end{tabular} \\
\hline \& \[
\cos 2 \theta=\frac{9}{25}-\frac{16}{25}=-\frac{7}{25}
\] \& B1 \& 2 \& - 0.28 \\
\hline (b)(i) \& \[
\begin{array}{ll}
\frac{\mathrm{d} x}{\mathrm{~d} \theta}=6 \cos 2 \theta \& , \quad \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=-8 \sin 2 \theta \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4}{3} \frac{\sin 2 \theta}{\cos 2 \theta} \& \text { ISW }
\end{array}
\] \& M1
A1

A1 \& 3 \& | Attempt both derivatives. ie $p \cos 2 \theta$ |
| :--- |
| Both correct. |
| $q \sin 2 \theta$ CSO OE |

\hline (ii) \& $$
\begin{aligned}
& P\left(\frac{72}{25},-\frac{28}{25}\right) \\
& \text { Gradient }==-\frac{4}{3} \times-\frac{24}{7}
\end{aligned}
$$ \& B1F

M1 \& \& | $(2.88,-1.12)$ |
| :--- |
| Their $\frac{q \sin 2 \theta}{p \cos 2 \theta}$ or $\frac{p \cos 2 \theta}{q \sin 2 \theta}$ |
| must be working with rational numbers |

\hline \& Tangent $y+\frac{28}{25}=\frac{32}{7}\left(x-\frac{72}{25}\right) \quad$ ISW \& A1 \& 3 \& | Any correct form. $7 y=32 x-100$ |
| :--- |
| Fractions in simplest form Equation required |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MPC4 (cont)

MPC4 (cont)

Q	Solution	Marks	Total	Comments
9(a)(i)	$t=0 \quad h=A(1-1)=0$	B1	1	
(ii)	$57=A\left(1-\mathrm{e}^{-\frac{12}{4}}\right)$	M1		
	$A=\frac{57}{\left(1-\mathrm{e}^{-3}\right)} \approx 60$	A1	2	Or 59.9... seen. $A=$ correct expression $\approx 602 \mathrm{sf}$
(b)(i)	$h=48 \quad \frac{48}{60}=1-\mathrm{e}^{-\frac{1}{4} t}$	M1		
	$\begin{aligned} & \ln \left(\mathrm{e}^{-\frac{1}{4} t}\right)=\ln \left(\frac{1}{5}\right) \\ & -\frac{1}{4} t=-\ln 5 \Rightarrow t=4 \ln 5 \end{aligned}$	m1 A1	3	
(ii)	$\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{1}{4} \times-60 \times \mathrm{e}^{-\frac{1}{4} t}$	M1		Differentiate, condone sign errors
	$60 e^{-\frac{1}{4} t}=60-h \Rightarrow \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{1}{4}(60-h)$	m1		Eliminate $\mathrm{e}^{-\frac{1}{4} t}$
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=15-\frac{h}{4}$	A1	3	CSO, AG
(iii)	$h=8$	B1	1	
	Total		10	
	TOTAL		75	

General Certificate of Education June 2010

Mathematics
MPC4

Pure Core 4

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)
(b)(i)
(ii) \& $$
\left.\begin{array}{rl}
\mathrm{f}\left(\frac{1}{4}\right) & =8 \times \frac{1}{64}+6 \times \frac{1}{16}-14 \times \frac{1}{4}-1 \\
& =-4 \\
\mathrm{~g}\left(\frac{1}{4}\right) & =\text { number(s) }+d=0 \\
d=3
\end{array}\right] \begin{aligned}
\mathrm{g}(x) & =(4 x-1)\left(2 x^{2}+b x-3\right) \\
x^{2} \quad \begin{array}{lll}
6 & =4 b-2 & \text { or } x \\
b & =2
\end{array} & -14=-b-12
\end{aligned}
$$ \& $$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1F } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$ \& 2
2

3 \& | Use $x=\frac{1}{4}$ in evaluation |
| :--- |
| NMS 2/2; no ISW |
| Use factor theorem to find d See some processing NMS 2/2 $a=2 \quad c=-3 ; \text { F on } d(c=-d)$ |
| Any appropriate method; PI NMS 2/2 |

\hline \& Total \& \& 7 \&

\hline (a)

(b)(i) \& \begin{tabular}{l}
Alternatives:
$$
\begin{array}{r}
4 x - 1 \longdiv { 2 x ^ { 2 } + 2 x - 3 } \begin{array} { r }
{ 8 x ^ { 3 } + 6 x ^ { 2 } - 1 4 x - 1 } \\
{ 8 x ^ { 3 } \frac { - 2 x ^ { 2 } } { 8 x ^ { 2 } } } \\
{ 8 x ^ { 2 } - 1 4 x } \\
{ \frac { - 1 2 x } { - 1 2 x } } \\
{ - 1 2 x + 3 } \\
{ - 4 }
\end{array}
\end{array}
$$

Division as for (a) $\Rightarrow d-3$ last line $d=3$

 \&

(M1)

(A1)

(M1)

(A1)
\end{tabular} \& (2)

(2) \& | Complete division with integer remainder |
| :--- |
| Remainder $=-4$ stated |
| Candidate's -3 |

\hline 2(a) \& | $\begin{aligned} & \begin{aligned} \frac{\mathrm{d} x}{\mathrm{~d} t} & =-3 \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=6 t^{2} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{6 t^{2}}{3} \\ & =-2 t^{2} \end{aligned} \\ & t=1 \quad m_{\mathrm{T}}=-2 \quad m_{\mathrm{N}}=\frac{1}{2} \end{aligned}$ |
| :--- |
| Attempt at equation of normal using $(x, y)=(-2,3)$ |
| Normal has equation $y-3=\frac{1}{2}(x+2)$ $\begin{aligned} & t=\frac{1-x}{3} \quad \text { or } \quad t=\sqrt[3]{\frac{y-1}{2}} \\ & y=1+2\left(\frac{1-x}{3}\right)^{3} \end{aligned}$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1F |
| M1 |
| A1 |
| M1 |
| A1 | \& 3

4
4

2 \& | Both derivatives correct; PI |
| :--- |
| Correct use of chain rule |
| CSO |
| Substitute $t=1 \quad m_{N}=-\frac{1}{m_{T}}$ |
| F on gradient; $m_{\mathrm{T}} \neq \pm 1$ |
| Condone one error |
| CSO; ACF |
| Correct expression for t in terms of x or y |
| ACF |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 3(a)(i) \& \[
\begin{aligned}
\& 7 x-3=A(3 x-2)+B(x+1) \\
\& x=-1 \quad x=\frac{2}{3} \\
\& A=2 \quad B=1 \\
\& \begin{array}{r}
\int \frac{7 x-3}{(x+1)(3 x-2)} \mathrm{d} x= \\
p \ln (x+1)+q \ln (3 x-2) \\
= \\
2 \ln (x+1)+\frac{1}{3} \ln (3 x-2)(+c)
\end{array} \\
\& \begin{aligned}
\frac{6 x^{2}+x+2}{2 x^{2}-x+1} \& =\frac{6 x^{2}-3 x+3+4 x-1}{2 x^{2}-x+1} \\
\quad= \& 3+\frac{4 x-1}{2 x^{2}-x+1}
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
M1 m1 A1 \\
M1 \\
A1F \\
M1 \\
B1 \\
A1
\end{tabular} \& 3

2

3 \& | Substitute two values of x and solve for A and B |
| :--- |
| Or solve $\left.\begin{array}{rl}7 & =3 A+B \\ -3 & =-2 A+B\end{array}\right\}$ condone one error |
| Condone missing brackets |
| F on A and B; constant not required $\begin{aligned} & P=3 \\ & Q=4 \text { and } R=-1 \end{aligned}$ |

\hline \& Total \& \& 8 \&

\hline (a)(i) \& | Alternatives: |
| :--- |
| By cover up rule $\begin{aligned} & x=-1 \quad A=\frac{-7-3}{-5} \\ & x=\frac{2}{3} \quad B=\frac{\frac{14}{3}-3}{\frac{5}{3}} \\ & A=2 \quad B=1 \\ & 2 x ^ { 2 } - x + 1 \longdiv { 6 x ^ { 2 } + x + 2 } \\ & \frac{6 x^{2}-3 x+3}{4 x-1} \end{aligned}$ |
| or $\begin{aligned} & 6 x^{2}+x+2=P\left(2 x^{2}-x+1\right)+Q x+R \\ & \quad=2 P x^{2}+(Q-P) x+P+R \\ & P=3 \\ & Q-P=1 \\ & P+R=2 \\ & Q=4 \text { and } R=-1 \end{aligned}$ | \& | (M1) |
| :--- |
| (A1,A1) |
| (M1) |
| (B1) |
| (A1) |
| (M1) |
| (B1) |
| (A1) | \& (3)

(3)

(3) \& | $x=-1 \text { and } x=\frac{2}{3}$ |
| :--- |
| and attempt to find A and B |
| SC NMS A and B both correct $3 / 3$ |
| One of A or B correct $1 / 3$ |
| Complete division, with $a x+b$ remainder |
| $P=3$ stated |
| $Q=4$ and $R=-1$ stated or written as expression |
| Multiply across and equate coefficients or use numerical values of x $P=3$ stated |
| $Q=4$ and $R=-1$ stated or written as expression |

\hline
\end{tabular}

MPC4 (cont)

MPC4 (cont)

MPC4 (cont)

General Certificate of Education (A-level) January 2011

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Mark Scheme - General Certificate of Education (A-level) Mathematics - Pure Core 4 - January 2011
MPC4 (cont)

Q	Solution	Marks	Total	
2(a)(iii)	Alternative			
	$\frac{\mathrm{f}(x)+\mathrm{q}(x)}{\mathrm{f}(x)}$, where q is a quadratic expression $=1+\frac{(3 x+1)(x+2)}{(3 x+1)(3 x-1)(x+2)}$ $=1+\frac{1}{3 x-1}$	(M1)		
	(A1)			

MPC4 (cont)

MPC4 (cont)

Q	Solution	Marks	Total	Comments
(c)	$\frac{5 x}{3}<1$ oe or $\frac{5 x}{3}>-1$ oe	M1		Condone \leq instead of $<$
	$\|x\|<\frac{3}{5}$ or $-\frac{3}{5}<x<\frac{3}{5}$	A1	2	CAO
			$\mathbf{1 2}$	

$\begin{aligned} & \hline \text { MPC4 (cont) } \\ & \hline \mathbf{Q} \\ & \hline \end{aligned}$	Solution			
		Marks	Total	Comments
5(a)	$\begin{aligned} m & =10 \times 2^{-\frac{14}{8}} \\ & \approx 3(\mathrm{gm}) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Condone 2.97 or better NOT 2.9 as final answer
(b)	$2^{-\frac{d}{8}}=\frac{1}{16}$	M1		
	$\frac{d}{8}=4 \Rightarrow d=32$	A1	2	cso
	$0.01 m_{0}=m_{0} \times 2^{-\frac{t}{8}}$	M1		m_{0} can be numerical
	$\begin{aligned} & \ln (0.01)=-\frac{t}{8} \ln (2) \\ & t=53.15 \end{aligned}$	M1		Take logs correctly from their equation leading to a linear equation in t.
		A1	3	cso
			7	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$	B1		Condone numerator as $\tan x+\tan x$
	$2 \tan x+\tan x\left(1-\tan ^{2} x\right)=0$	M1		Multiplying throughout by their denominator
	$\begin{aligned} & \tan x=0 \\ & \text { or }\left(2+1-\tan ^{2} x\right)=0 \Rightarrow \tan ^{2} x=3 \end{aligned}$	A1	3	AG Must show $\tan x=0$ and $\tan ^{2} x=3$
	Alternative			
	$\tan 2 x=\frac{\sin 2 x}{\cos 2 x}=\frac{2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}$			
	$\frac{2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}+\frac{\sin x}{\cos x}=0$	(B1)		
	$2 \sin x \cos ^{2} x+\sin x\left(\cos ^{2} x-\sin ^{2} x\right)=0$			
	$\sin x\left(2 \cos ^{2} x+\cos ^{2} x-\sin ^{2} x\right)=0$	(M1)		
	$\left.\left.\begin{array}{l} \Rightarrow \sin x=0 \\ \Rightarrow \tan x=0 \end{array}\right\} \text { and } \quad 3 \cos ^{2} x=\sin ^{2} x\right\}$	(A1)	(3)	
(ii)	$x=60$ AND $x=120$	B1	1	Condone extra answers outside interval eg 0 and 180
(b)(i)	$2 \sin x \cos x=\cos x . \mathrm{f}(x)$	M1		Where $\mathrm{f}(x)=\cos ^{2} x-\sin ^{2} x$ or $2 \cos ^{2} x-1$ or $1-2 \sin ^{2} x$
	$\begin{aligned} & 2 \sin x \cos x=\cos x\left(1-2 \sin ^{2} x\right) \\ & (\cos x \neq 0) \quad 2 \sin x=1-2 \sin ^{2} x \end{aligned}$	A1		
	$2 \sin ^{2} x+2 \sin x-1=0$	A1	3	AG

Mark Scheme - General Certificate of Education (A-level) Mathematics - Pure Core 4 - January 2011
\(\left.$$
\begin{array}{|r|l|c|c|l|}\hline \hline \text { (ii) } & \begin{array}{l}\sin x=\frac{-2 \pm \sqrt{4-4 \times 2 \times(-1)}}{2 \times 2} \\
\sin x=\frac{-2 \pm 2 \sqrt{3}}{4}\end{array} & \text { M1 } & & \begin{array}{l}\text { Correct use of quadratic formula or } \\
\text { completing the square or correct factors } \\
\sqrt{12} \text { must be simplified and must } \\
\text { have } \pm\end{array}
$$

\sin x=\frac{-1-\sqrt{3}}{2} has no solution

\sin x=\frac{\sqrt{3}-1}{2}\end{array}\right\} \quad\) E1 | 3 | Aeject one solution and state correct
 solution. | |
| :--- | :--- | :--- |
| | | |

Q	Solution	Marks	Total	Comments
$\begin{array}{r} 7 \\ \text { (a)(i) } \end{array}$	$\int \frac{\mathrm{d} x}{\sqrt{x}}=\int \sin \left(\frac{t}{2}\right) \mathrm{d} t$	B1		Correct separation; condone missing integral signs.
	$2 \sqrt{x}=-2 \cos \left(\frac{t}{2}\right)(+k)$	M1		$\begin{aligned} & p \sqrt{x}=q \cos \left(\frac{t}{2}\right) \\ & \text { Condone missing }+k \end{aligned}$
	$x=\left(-\cos \left(\frac{t}{2}\right)+C\right)^{2}$	A1	3	Must have previous line correct
(ii)	$(1,0) \quad 2=-2+k$ or $1=(-1+C)^{2}$	M1		Use (1,0) to find a constant
	$k=4$ or $C=2$	A1ft		ft on $C=p-q$ from (a)(i)
	$x=\left(2-\cos \left(\frac{t}{2}\right)\right)^{2}$	A1	3	cso applies to (a)(ii)
(b)(i)	Greatest height when $\cos (b t)=-1$	M1		
	Greatest height $=9$ (m)	A1ft	2	ft is (their $a+1)^{2}$
(ii)	$\cos \left(\frac{t}{2}\right)=2-\sqrt{5}$	M1		$\cos b t=a-\sqrt{5}$
	$t=2 \cos ^{-1}(2-\sqrt{5})=3.6 \text { (seconds } 1 \mathrm{dp} \text {) }$	A1	2	condone 3.6 or better (3.618.....)
			10	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
8(a)(i)	$\overrightarrow{A B}=\left[\begin{array}{l} 6 \\ 0 \\ 3 \end{array}\right]-\left[\begin{array}{r} 3 \\ -2 \\ 4 \end{array}\right]=\left[\begin{array}{r} 3 \\ 2 \\ -1 \end{array}\right]$	M1 A1	2	$\pm(\overrightarrow{O B}-\overrightarrow{O A})$ implied by 2 correct components
(ii)	$\left[\begin{array}{r} 3 \\ 2 \\ -1 \end{array}\right] \cdot\left[\begin{array}{r} 2 \\ -1 \\ 3 \end{array}\right]=6-2-3=1$	M1 A1ft		Scalar product with correct vectors; allow one component error. ft on $\overrightarrow{A B}$
	$\begin{aligned} & \cos \theta=\frac{s p}{\sqrt{14} \sqrt{14}} \\ & \cos \theta=\frac{1}{14} \quad \theta=85.9^{\circ} \end{aligned}$	m1 A1	4	Correct form for $\cos \theta$ with one correct modulus cso 85.9 or better
(b)(i)	$\overrightarrow{O D}=\left[\begin{array}{r} 3 \\ -2 \\ 4 \end{array}\right]+2\left[\begin{array}{r} 2 \\ -1 \\ 3 \end{array}\right]=\left[\begin{array}{r} 7 \\ -4 \\ 10 \end{array}\right]$	M1		Implied by 2 correct components
(ii)	line $l_{2} \quad \mathbf{r}=\left[\begin{array}{r}7 \\ -4 \\ 10\end{array}\right]+\mu\left[\begin{array}{r}3 \\ 2 \\ -1\end{array}\right]$	A1ft	2	$\mathbf{r}=$ or $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ required $\quad \mathrm{ft}$ on $\overrightarrow{A B}$
	$\overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}=\left[\begin{array}{r} 1+3 p \\ -4+2 p \\ 7-p \end{array}\right]$	M1		$\mu=p \text { at } C$ Find $\overrightarrow{B C}$ in terms of p
	$\begin{aligned} & \overrightarrow{A D}=\left[\begin{array}{r} 4 \\ -2 \\ 6 \end{array}\right] \quad\|\overrightarrow{B C}\|=\sqrt{56} \\ & (1+3 p)^{2}+(-4+2 p)^{2}+(7-p)^{2}=56 \end{aligned}$	B1ft m1		PI \quad B1 is for $\|\overrightarrow{B C}\|=\sqrt{56}$
	$\begin{aligned} 14 p^{2}-24 p+66 & =56 \\ 7 p^{2}-12 p+5 & =0 \\ (7 p-5)(p-1) & =0 \end{aligned}$	m1		ft on $\overrightarrow{B C}$ Simplification to quadratic equation with all terms on one side
	$p=\frac{5}{7} \text { and } p=1$	A1		Exact fraction required
	C is at $\left(9 \frac{1}{7},-2 \frac{4}{7}, 9 \frac{2}{7}\right)$	A1	6	cso Accept as column vector
			14	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
8(b)(ii)	Alternative : Using equal angles $\begin{gathered} \overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}=\left[\begin{array}{r} 1+3 p \\ -4+2 p \\ 7-p \end{array}\right] \\ \overrightarrow{A D}=\left[\begin{array}{r} 4 \\ -2 \\ 6 \end{array}\right] \quad\|\overrightarrow{B C}\|=\sqrt{56} \\ (\cos \theta)=\frac{\overrightarrow{B A} \bullet \overrightarrow{B C}}{\sqrt{14} \sqrt{56}}=\frac{\left[\begin{array}{c} -3 \\ -2 \\ 1 \end{array}\right] \cdot\left[\begin{array}{c} 1+3 p \\ -4+2 p \\ 7-p \end{array}\right]}{\sqrt{14} \sqrt{56}}=\frac{1}{14} \\ -3-9 p+8-4 p+7-p=2 \\ p=\frac{5}{7} \end{gathered}$ C is at $\left(9 \frac{1}{7},-2 \frac{4}{7}, 9 \frac{2}{7}\right)$	(M1) (B1ft) (m1) (m1) (A1) (A1)	(6)	$\mu=p \text { at } C$ Find $\overrightarrow{B C}$ in terms of p Condone $\overrightarrow{A B}$ used. Allow $\|\overrightarrow{B C}\|$ in terms of p, in which case previous B1 is implied Reduce to linear or quadratic equation in p.

MPC4 (cont)

Q	Solution	Marks	Total	Comments
8(b)(ii)	Alternative : using symmetry (i) $\begin{aligned} & \|\overrightarrow{A D}\|=\|\overrightarrow{B C}\|=\sqrt{56} \\ & \|\overrightarrow{D C}\|=\|\overrightarrow{A B}\|-\|\overrightarrow{A D}\| \cos \theta-\|\overrightarrow{B C}\| \cos \theta \\ & \|\overrightarrow{D C}\|=\frac{10}{\sqrt{14}} \\ & \|\overrightarrow{D C}\|=p\|\overrightarrow{A B}\| \Rightarrow \frac{10}{\sqrt{14}}=p \sqrt{14} \\ & p=\frac{5}{7} \end{aligned}$ C is at $\left(9 \frac{1}{7},-2 \frac{4}{7}, 9 \frac{2}{7}\right)$ Alternative using symmetry (ii) $\begin{aligned} & \|\overrightarrow{A D}\|=\sqrt{56} \\ & \|\overrightarrow{A E}\|=\|\overrightarrow{A D}\| \cos \theta=\sqrt{56} \times \frac{1}{14}=\frac{2}{\sqrt{14}} \\ & \|\overrightarrow{A E}\|=q\|\overrightarrow{A B}\| \Rightarrow \frac{2}{\sqrt{14}}=q \sqrt{14} \end{aligned}$ and $\begin{array}{r} \|\overrightarrow{A E}\|=\|\overrightarrow{F B}\| \Rightarrow p=1-2 q \\ q=\frac{2}{14} \quad p=\frac{5}{7} \end{array}$ C is at $\left(9 \frac{1}{7},-2 \frac{4}{7}, 9 \frac{2}{7}\right)$	(B1ft) (M1) (A1ft) (m1) (A1) (A1) (B1ft) (M1) (A1ft) (m1) (A1) (A1)	(6) (6)	$\overrightarrow{A D}=\left[\begin{array}{r} 4 \\ -2 \\ 6 \end{array}\right]$ Substitute values and evaluate $\|\overrightarrow{A B}\|-\|\overrightarrow{A D}\| \cos \theta-\|\overrightarrow{B C}\| \cos \theta$ F on $\overrightarrow{A B}$ and $\cos \theta$ Set up equation in p Substitute values and evaluate for $\|\overrightarrow{A D}\| \cos \theta$. F on $\cos \theta$ Set up equation to find p
	TOTAL		75	

General Certificate of Education (A-level) June 2011

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$(\mathrm{f}(-2)=) 0$	B1	1	ISW (0 seen is B1)
(b)	$f\left(\frac{3}{2}\right)=4\left(\frac{3}{2}\right)^{3}-13\left(\frac{3}{2}\right)+6$	M1		Clear attempt at $\mathrm{f}\left(\frac{3}{2}\right)$ with 3 terms
				Factor theorem required; NOT long division
	$4 \times \frac{27}{8}-13 \times \frac{3}{2}+6 \text { or } 13.5-19.5+6$			Must see this, or equivalent
	$=0 \Rightarrow(2 x-3)$ is a factor	A1	2	Shown $=0$ and statement.
(c)	Any appropriate method to find third factor	M1		Full long division Compare coefficients Factor Theorem f($\frac{1}{2}$)
	$(x+2)(2 x-3)(2 x-1)$	A1		Or $\left(2 x^{2}+x-6\right)(2 x-1)$ NMS M1A1
				SC1 $(2 x+1)$ or $(1-2 x)$ or $\left(x-\frac{1}{2}\right)$ or $\left(\frac{1}{2}-x\right)$ for third factor
	$2 x^{2}+x-6=(x+2)(2 x-3)$	M1		Factorise numerator correctly or cancel $2 x^{2}+x-6$
	$\frac{2 x^{2}+x-6}{\mathrm{f}(x)}=\frac{1}{2 x-1}$	A1	4	No ISW
			7	

Q	Solution	Marks	Total	Comments
(a)(i)	$\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\right)-6 \sin 2 \theta \quad, \quad\left(\frac{\mathrm{~d} y}{\mathrm{~d} \theta}=\right)-2 \sin \theta$	M1		$\begin{aligned} & \left(\frac{\mathrm{dx}}{\mathrm{~d} \theta}=\right) p \sin 2 \theta \text { or } r \sin \theta \cos \theta \\ & \left(\frac{\mathrm{dy}}{\mathrm{~d} \theta}=\right) q \sin \theta \end{aligned}$
		A1		Both correct.
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 \sin \theta}{-6 \sin 2 \theta}$	M1		Use chain rule $\frac{\frac{d y}{d \theta}}{\frac{d}{d \theta}}$; condone one slip
	$=\frac{2 \sin \theta}{6 \times 2 \sin \theta \cos \theta}=\frac{1}{6 \cos \theta}$	A1	4	$k=6$ must come from correct working seen AG
(ii)	$\theta=\frac{\pi}{3} \quad m_{\mathrm{T}}=\frac{1}{3}$	B1ft		ft on $k \quad\left(\frac{1}{k \times \frac{1}{2}}\right)$ k need not be numerical
	$m_{\mathrm{N}}=-3$	B1ft		$\mathrm{ft} \text { on } m_{\mathrm{T}}$
	$(x, y)=\left(-\frac{3}{2}, 1\right)$	B1		
	Normal $y-1=-3\left(x+\frac{3}{2}\right)$	B1	4	CAO; any correct form, ISW. $2 y+6 x+7=0$
(b)	$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		$p+q \cos 2 x$; Allow different letters for x or mixture eg θ even for A1and the following A1ft
	$\int p \mathrm{~d} x=p x \quad \int q \cos 2 x=\frac{1}{2} q \sin 2 x$	A1ft		Both integrals correct; ft on p and q
	$=\left(\frac{\pi}{8}-\frac{1}{4}\right)-\left(-\frac{\pi}{8}-\left(-\frac{1}{4}\right)\right)$	m1		Correct use of limits; $F\left(\frac{\pi}{4}\right)-F\left(-\frac{\pi}{4}\right) \text { or } 2 F\left(\frac{\pi}{4}\right)$
				$\mathrm{F}(x)=p x+r \sin 2 x$ and $\sin \frac{\pi}{2}$, $\sin \left(-\frac{\pi}{2}\right)$ must be evaluated correctly for m1
	$=\frac{\pi}{4}-\frac{1}{2}$	A1	5	CSO OE ISW
			13	

4 (b)	Alternative $\left\{\begin{aligned} & \int \sin ^{2} x \mathrm{~d} x=-\sin x \cos x-\int-\cos x \cos x \mathrm{~d} x \\ &=-\sin x \cos x+\int 1-\sin ^{2} x \mathrm{~d} x \\ & 2 \int \sin ^{2} x \mathrm{~d} x=-\sin x \cos x+x \\ & 2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin ^{2} x \mathrm{~d} x=\mathrm{G}\left(\frac{\pi}{4}\right)-\mathrm{G}\left(-\frac{\pi}{4}\right) \\ & \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin ^{2} x \mathrm{~d} x=\frac{\pi}{4}-\frac{1}{2} \end{aligned}\right.$	M1 m1 A1 m1 A1	5	Use parts; condone sign slips Use $\cos ^{2} x=1-\sin ^{2} x$ Correct use of limits

Q	Solution	Marks	Total	Comments
5 (a)	$\overrightarrow{A B}=\left[\begin{array}{r} 4 \\ -1 \\ 3 \end{array}\right]-\left[\begin{array}{r} 5 \\ 1 \\ -2 \end{array}\right]=\left[\begin{array}{r} -1 \\ -2 \\ 5 \end{array}\right]$	B1		$\pm(\overrightarrow{O A}-\overrightarrow{O B})$ Co-ordinate form only is B0 Condone one component incorrect
	Line through A and B	M1		$\overrightarrow{O A}+\lambda \mathbf{d}$ or $\overrightarrow{O B}+\lambda \mathbf{d}$ where $\mathbf{d}=\overrightarrow{A B}$ or $\overrightarrow{B A}$ all in components and identified.
	$\mathbf{r}=\left[\begin{array}{r} 5 \\ 1 \\ -2 \end{array}\right]+\lambda\left[\begin{array}{r} -1 \\ -2 \\ 5 \end{array}\right] \text { or } \quad \mathbf{r}=\left[\begin{array}{r} 4 \\ -1 \\ 3 \end{array}\right]+\lambda\left[\begin{array}{r} -1 \\ -2 \\ 5 \end{array}\right]$	A1	3	OE $\quad \mathbf{r}$ or $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ required Condone missing brackets on $\overrightarrow{O A}$ or $\overrightarrow{O B}$
(b)(i)	$\begin{aligned} 5-\lambda & =-8+5 \mu \\ 1-2 \lambda & =5 \\ -2+5 \lambda & =-6-2 \mu \end{aligned}$	M1		Clear attempt to set up and solve at least two simultaneous equations in μ and a different parameter. Allow in column vector form.
	$\lambda=-2 \quad \mu=3$	A1		One of λ or μ correct OE
	$-2+5 \times-2=-12 \quad-6-2 \times 3=-12$ Both equal -12 so intersect	E1		Verify intersect, λ and μ correct or verify $(7,5,-12)$ is on both lines; statement required
	P is $(7,5,-12)$	B1	4	CAO condone $P=\left[\begin{array}{c}7 \\ 5 \\ -12\end{array}\right]$ OE and missing brackets
(ii)	$\overrightarrow{B C}=\left[\begin{array}{c} -8+5 \mu \\ 5 \\ -6-2 \mu \end{array}\right]-\left[\begin{array}{r} 4 \\ -1 \\ 3 \end{array}\right]$	B1		$\begin{aligned} & \overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B} \\ & \overrightarrow{C B}=\overrightarrow{O B}-\overrightarrow{O C} \end{aligned}$
	$\left[\begin{array}{r} 3 \\ 6 \\ -15 \end{array}\right] \cdot \overrightarrow{B C}=0$	M1		Clear attempt at $\pm \overrightarrow{B P}$ or $\pm \overrightarrow{A B}$ or $\pm \overrightarrow{A P}$ in components sp with $\overrightarrow{B C}=0$
	$\begin{aligned}-36+15 \mu+36+135+30 \mu & =0 \\ \mu & =-3\end{aligned}$	m1 A1		Linear equation in μ using their $\overrightarrow{B C}$ and solved for μ. Condone one arithmetical or sign slip
	C is $(-23,5,0)$	A1	5	CSO Condone column vector.
			12	

Q	Solution	Marks	Total	Comments
$\begin{gathered} 6 \\ \text { (a) } \end{gathered}$	$(C=) \frac{2}{\mathrm{e}} \text { or } 2 \mathrm{e}^{-1} \text { or } 2\left(\frac{1}{\mathrm{e}}\right) \text { or } 2\left(\mathrm{e}^{-1}\right)$	B1	1	One of these answers only. Not 0.736 but allow ISW.
(b)	$\frac{\mathrm{d}}{\mathrm{~d} \nu}(2 y)=2 \frac{\mathrm{~d} y}{\mathrm{~d}}$	B1		
	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{2 x} y^{2}\right)=2 \mathrm{e}^{2 x} y^{2}+\mathrm{e}^{2 x} 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	M1		Product; 2 terms added, one with $\frac{\mathrm{d} y}{\mathrm{~d} x}$;
		$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$		A1 for each term
	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}+C\right)=2 x$	B1		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=$	M1		Solve their equation correctly for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$\frac{x-\mathrm{e}^{2 x} y^{2}}{\mathrm{e}^{2 x} y+1}$	A1	7	Condone factor of 2 in both numerator and denominator. ISW
(c)	Evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $\left(1, \frac{1}{\mathrm{e}}\right)$	M1		Substitute $x=1$ and $y=\frac{1}{\mathrm{e}}$ into numerator of $\frac{\mathrm{d} y}{\mathrm{~d} x}$; allow one slip
	numerator $=1-\mathrm{e}^{2} \mathrm{e}^{-2}=0 \Rightarrow$ stationary point	A1	2	Conclusion required; must score full marks in part (b) Allow $1-1=0$ or $2-2=0$
			10	

Q	Solution	Marks	Total	Comments
Q7 (a)	$\frac{\mathrm{d} A}{\mathrm{~d} t}$	B1		
	$=-k$	B1	2	
(b)(i)	$A=-k t(+C)$	M1		Integrate
	$C=4 \pi \times 60^{2}$	A1		C correct from $A= \pm k t+C$
	$4 \pi \times 30^{2}=-9 k+4 \pi \times 60^{2}$	m1		Use $r=30 \quad t=9$ and attempt to find k, as far as $k=\ldots$ $k=1200 \pi$
	$\begin{aligned} A & =-1200 \pi t+14400 \pi \\ & =1200 \pi(12-t) \end{aligned}$	A1	4	AG CSO
(ii)	$t=12$ (days)	B1	1	
			7	

Q	Solution	Marks	Total	Comments
Q8 (a)	$\begin{aligned} & 1=A(1-x)^{2}+B(1-x)(3-2 x)+C(3-2 x) \\ & x=1 \quad x=\frac{3}{2} \quad x=0 \end{aligned}$	M1		Attempt to clear fractions
	$\left.C=1 \quad 1=A\left(-\frac{1}{2}\right)^{2} \quad 1=A+3 B+3 C\right\}$	m1		Use any two (or three) values of x to set up two (or three) equations
	$A=4 \quad B=-2 \quad C=1$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	Two values correct All values correct
(b)	$\int \frac{1}{2 \sqrt{y}} \mathrm{~d} y=\int \frac{4}{3-2 x}-\frac{2}{1-x}+\frac{1}{(1-x)^{2}} \mathrm{~d} x$	B1ft		Separate using partial fractions; correct notation; condone missing integral signs but dy and $\mathrm{d} x$ must be in correct place. ft on their A, B, C and on each integral.
	$\int \frac{1}{2 \sqrt{y}} \mathrm{~d} y=\sqrt{y}=$	B1		OE $\int \frac{k}{\sqrt{y}} \mathrm{~d} y=2 k \sqrt{y}$ is B1
	$-2 \ln (3-2 x)$			Condone missing brackets on
	$+2 \ln (1-x)$	B1ft		one \ln integral.
	$+\frac{1}{1-x}(+C)$	B1ft		Condone omission of $+C$
	$x=0 \quad y=0 \Rightarrow 0=-2 \ln 3+0+1+C$	M1		Use $(0,0)$ to find C. Must get to $C=\ldots$.
	$C=2 \ln 3-1$	A1		Correct C found from correct equation. C must be exact, in any form but not decimal.
	$\sqrt{y}=2 \ln \left(\frac{3-3 x}{3-2 x}\right)+\frac{1}{1-x}-1$	m1		Correct use of rules of logs to progress towards requested form of answer. C must be of the form $r \operatorname{lns}+t$
	$y^{\frac{1}{2}}=2 \ln \left(\frac{3-3 x}{3-2 x}\right)+\frac{x}{1-x}$	A1	9	OE CSO condone B0 for separation
			13	
	TOTAL		75	

Q8 (a)	Alternative $\begin{aligned} & 1=A(1-x)^{2}+B(1-x)(3-2 x)+C(3-2 x) \\ & 1=A+3 B+3 C \\ & 0=-2 A-5 B-2 C \\ & 0=A+2 B \\ & A=4 \quad B=-2 \quad C=1 \end{aligned}$	M1 m1 A1 A1	4	Set up three simultaneous equations Two values correct All values correct

General Certificate of Education (A-level)
 January 2012

Mathematics
MPC4
(Specification 6360)
Pure Core 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^4]Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4: January 2012 - Mark scheme

Q	Solution	Marks	Total	Comments
1(a)	$\begin{array}{ll} 2 x+3= & A(2 x+1)+B(2 x-1) \\ x=\frac{1}{2} & x=-\frac{1}{2} \\ A=2 & B=-1 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	3	Use two values of x to find A and B Both
(b)	$\begin{array}{r} 4 x ^ { 2 } - 1 \longdiv { 1 2 x ^ { 3 } - 7 x - 6 } \\ 12 x^{3}-\underline{3 x} \\ -4 x-6 \end{array}$	M1		Complete division leading to values for C and D $C=3 \quad D=-2$ stated or written
(c)	$\begin{aligned} & C=3 \\ & D=-2 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	in expression. SC B1 $C=3, D$ not found or wrong; $D=-2, C$ not found or wrong.
	$\begin{aligned} & \int 3 x-2\left(\frac{2}{2 x-1}-\frac{1}{2 x+1}\right) \mathrm{d} x \\ & 3 \frac{x^{2}}{2} \end{aligned}$	M1 A1ft		Use parts (a) and (b) to obtain integrable form ft on C
	$-2\left(\ln (2 x-1)-\frac{1}{2} \ln (2 x+1)\right)$	A1ft		Both correct; ft on A, B and D Condone missing brackets
	$\frac{3}{2}(4-1)-2\left(\left(\ln 3-\frac{1}{2} \ln 5\right)-\left(\ln 1-\frac{1}{2} \ln 3\right)\right)$	m1		Correct substitution of limits
	$\frac{9}{2}-3 \ln 3+\ln 5=\frac{9}{2}+\ln \left(\frac{5}{27}\right)$	A1	5	$p=\frac{9}{2} \quad q=\frac{5}{27}$
		Total	11	

(a) Condone poor algebra for M1 if continues correctly.
(b) Complete division for M1; obtain a value for $C(C x)$ and a remainder $a x+b$
(c) Form $\int C x+\left(\frac{P}{2 x-1}+\frac{Q}{2 x+1}\right) \mathrm{d} x$ using candidate's P, Q, C for M1. Condone missing $\mathrm{d} x$.
$\int C x \mathrm{~d} x=C \frac{x^{2}}{2}$ for A1ft \quad ISW extra terms eg $\frac{12}{4 x^{2}-1}$ for first three terms only; max 3/5
Candidate's C; must have a value.
$\int \frac{4 x+6}{4 x^{2}-1} \mathrm{~d} x=\int \frac{4 x}{4 x^{2}-1}+\frac{6}{4 x^{2}-1} \mathrm{~d} x$ is an integrable form, as $\int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right)$ is in the formula book, but they must try to integrate to show they know this, or use partial fractions again with
$\frac{6}{4 x^{2}-1}=\frac{3}{2 x-1}-\frac{3}{2 x+1}$ for M1
Substitute limits into $C \frac{x^{2}}{2}+m \ln (2 x-1)+n \ln (2 x+1)$, or equivalent, for m 1 ;
substitution must be completely correct.
Condone $\frac{9}{2}-\ln \left(\frac{27}{5}\right)$ for A1

(a)(ii) Special case B1 for $\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$
(b) M1 for substituting candidates values for $\tan \alpha$ and $\tan \beta$ into correct formula.

Completely correct or_completely_correct ft on $\tan \alpha, \tan \beta$.
Special case answer is $\frac{12+3 \sqrt{3}}{9-4 \sqrt{3}}$ or $\times \frac{a}{a}$ where a is integer or $\sqrt{3}$ for M1m1A0

Q	Solution	Marks	Total	Comments
3 (a)	$\begin{aligned} (1+6 x)^{\frac{2}{3}} & =1+\frac{2}{3} \times 6 x+k x^{2} \\ & =1+4 x-4 x^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Simplified coefficients required
(b)	$(8+6 x)^{\frac{2}{3}}=8^{\frac{2}{3}}\left(1+\frac{6}{8} x\right)^{\frac{2}{3}}$	B1		OE
	$\left(1+\frac{6}{8} x\right)^{\frac{2}{3}}=1+4\left(\frac{x}{8}\right)-4\left(\frac{x}{8}\right)^{2}$	M1		x replaced by $\frac{x}{8}$ in answer to (a)
	$(8+6 x)^{\frac{2}{3}}=4+2 x-\frac{1}{4} x^{2}$	A1	3	Condone missing brackets, allow one error. Simplified coefficients required.
(c)	$\left(100=10^{2} \quad 8+6 x=10 \quad x=\frac{1}{3}\right)$			
	$\begin{aligned} 4+2 \times \frac{1}{3}-\frac{1}{4} \times\left(\frac{1}{3}\right)^{2} & \\ & =\frac{167}{36} \end{aligned}$	M1 A1	2	Use $x=\frac{1}{3}$ in binomial expansion from part (b) $\sqrt[3]{100} \approx \frac{167}{36}$
		Total	7	
$\begin{gathered} \hline 3 \\ \text { (b) } \end{gathered}$	Alternative $(8+6 x)^{\frac{2}{3}}=8^{\frac{2}{3}}\left(1+\frac{6}{8} x\right)^{\frac{2}{3}}$			OE
	$\begin{aligned} & \left(1+\frac{6}{8} x\right)^{\frac{2}{3}}=1+\frac{2}{3}\left(\frac{6}{8} x\right)+\frac{2}{3}\left(\frac{2}{3}-1\right) \frac{1}{2}\left(\frac{6}{8} x\right)^{2} \\ & (8+6 x)^{\frac{2}{3}}=4+2 x-\frac{1}{4} x^{2} \end{aligned}$			Condone missing brackets, allow one error.
	Alternative $\begin{aligned} & 8^{\frac{2}{3}}+\frac{2}{3} \times 8^{-\frac{1}{3}} \times 6 x+\frac{2}{3}\left(\frac{2}{3}-1\right) \frac{1}{2} \times 8^{-\frac{4}{3}} \times(6 x)^{2} \\ & 4+2 x-\frac{1}{4} x^{2} \end{aligned}$			Use binomial formula; condone one error and missing brackets.
(a)(b)	Condone $1^{\frac{2}{3}}$ for 1 for M1			

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} x y^{2}+3 y & =\left(8 t^{2}-t\right)\left(\frac{3}{t}\right)^{2}+3\left(\frac{3}{t}\right) \\ & =72-\frac{9}{t}+\frac{9}{t}=72 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Substitute and expand $k=72$
(b)(i)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=16 t-1 \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\frac{3}{t^{2}}$	B1B1		
	$\begin{aligned} t=\frac{1}{4} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{-\frac{3}{\left(\frac{1}{4}\right)^{2}}}{16 \times \frac{1}{4}-1} \\ & =-16 \end{aligned}$	M1 A1		Use chain rule $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-3}{16 t^{3}-t^{2}}\right)$ and calculate gradient using $t=\frac{1}{4}$
	$t=\frac{1}{4} \quad x=\frac{8}{16}-\frac{1}{4} \quad y=\frac{3}{\frac{1}{4}}$	M1		Calculate x and y using $t=\frac{1}{4}$
	$x=\frac{1}{4} \quad y=12$	A1		Both correct
	tangent $\quad y=-16 x+16$	A1	7	ACF CSO $y-12=-16\left(x-\frac{1}{4}\right)$ ISW
(ii)	$y=-16 \times \frac{3}{2}+16=-8$	M1		Substitute $x=\frac{3}{2}$ into
	$\frac{3}{2}(-8)^{2}+3 \times(-8)=96-24=72$	A1	2	candidate's tangent; calculate y $y=-8$ used to verify 72
		Total	11	
5(a)	Alternative $\begin{aligned} & x=8\left(\frac{3}{y}\right)^{2}-\frac{3}{y} \\ & x y^{2}+3 y=72 \end{aligned}$	M1 A1	2	Eliminate t $k=72$
(b)(i)	Alternative			
	$\begin{aligned} & 2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2} \\ &+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \end{aligned}$	M1A1 B1		Product rule attempted; two terms added, one with $\frac{d y}{d x}$
	$t=\frac{1}{4} \quad x=\frac{8}{16}-\frac{1}{4} \quad y=\frac{3}{\frac{1}{4}}$	M1		Calculate x and y using $t=\frac{1}{4}$
	$x=\frac{1}{4} \quad y=12$	A1		Both correct.
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-y^{2}}{2 x y+3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=-16$	m1		Calculate gradient from candidate's expression.
	tangent $y=-16 x+16$	A1	7	ACF CSO $y-12=-16\left(x-\frac{1}{4}\right) \quad$ ISW

Q	Solution	Marks	Total	Comments
6(a)	$16\left(\frac{3}{4}\right)^{3}+11\left(\frac{3}{4}\right)-15$	M1		Evaluate $\mathrm{f}\left(\frac{3}{4}\right)$; not long division.
	$=\frac{27}{4}+\frac{33}{4}-15=0 \Rightarrow \text { factor }$	A1	2	Processing and conclusion.
(b)	$27 \cos \theta\left(2 \cos ^{2} \theta-1\right)+$	B1		Use acf of $\cos 2 \theta$ formula
	$19 \sin \theta(2 \sin \theta \cos \theta)-15=0$	B1		Use acf of $\sin 2 \theta$ formula
	$\begin{aligned} & 54 \cos ^{3} \theta-27 \cos \theta+38\left(1-\cos ^{2} \theta\right) \cos \theta \\ &-15=0 \end{aligned}$	M1		All in cosines.
	$\begin{aligned} & 16 \cos ^{3} \theta+11 \cos \theta-15=0 \\ & x=\cos \theta \Rightarrow 16 x^{3}+11 x-15=0 \end{aligned}$	A1	4	Simplification and substitute $x=\cos \theta$ to obtain AG CSO.
(c)	$16 x^{3}+11 x-15=(4 x-3)\left(4 x^{2}+3 x+5\right)$	M1A1		Factorise $\mathrm{f}(x)$
	$b^{2}-4 a c=3^{2}-4 \times 4 \times 5 \quad(=-71)$	m1		Find discriminant of quadratic factor; or seen in formula
	$b^{2}-4 a c<0$, no solution (to $4 x^{2}+3 x+5=0$)			Conclusion; CSO
	$\Rightarrow \text { (only) solution is } \cos \theta=\frac{3}{4}$	A1	4	Condone $x=\frac{3}{4}$ is (only) solution
		Total	10	

(a) For A1; minimum processing seen; $16 \times \frac{27}{64}+11 \times \frac{3}{4}-15=0 \quad ; 15-15=0$ and no other working is A0 minimum conclusion $=0$ hence factor
(b) For M1 mark; $\cos 2 \theta$ (eventually) in form $a \cos ^{2} \theta+b ; 19 \sin \theta \sin 2 \theta$ in form $c \cos \theta \sin ^{2} \theta$ and use $\sin ^{2} \theta=1-\cos ^{2} \theta$ to obtain $c \cos \theta\left(1-\cos ^{2} \theta\right)$
(c) M1 $(4 x-3)\left(4 x^{2}+k x \pm 5\right)$ A1 fully correct
m 1 candidate's values of a, b, c used in expression for $b^{2}-4 a c$
or complete square to obtain $\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}$
A1 $b^{2}-4 a c$ correct or $\left(x+\frac{3}{8}\right)^{2}=\frac{9}{64}-\frac{5}{4} \quad\left(=-\frac{71}{64}\right)$ and stated to be negative so no solution or solutions are not real (imaginary)
Accept imaginary solutions from calculator if stated to be imaginary.
Condone $\sqrt{-71}$ is negative, or similar, so no solution.
Conclusion $x=\frac{3}{4}$ is solution, or $\cos \theta=\frac{3}{4}$ is solution

Q	Solution	Marks	Total	Comments
7	$\begin{aligned} & \int \frac{\mathrm{d} y}{y^{2}}=\int x \sin 3 x \mathrm{~d} x \\ & \int \frac{\mathrm{~d} y}{y^{2}}=-\frac{1}{y} \end{aligned}$	B1 B1		Correct separation and notation; condone missing integral signs
	$\begin{aligned} & \int x \sin 3 x \mathrm{~d} x=x\left(-\frac{1}{3} \cos 3 x\right) \\ &-\int-\frac{1}{3} \cos 3 x \mathrm{~d} x \end{aligned}$	M1 A1		Use parts $\begin{array}{ll}u=x & \frac{d v}{d x}=\sin 3 x \\ \frac{d u}{d x}=1 & v=k \cos 3 x\end{array}$ with correct substitution into
	$\begin{array}{r} =-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x \\ -\frac{1}{y}=-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x+C \end{array}$	A1		CAO
	$-1=-\frac{1}{3} \times \frac{\pi}{6} \cos \left(\frac{\pi}{2}\right)+\frac{1}{9} \sin \left(\frac{\pi}{2}\right)+C$	M1		Use $x=\frac{\pi}{6} \quad y=1 \quad$ to find C
	$\begin{aligned} & C=-\frac{10}{9} \\ & -\frac{1}{y}=-\frac{1}{9}(3 x \cos 3 x-\sin 3 x+10) \end{aligned}$	A1		CAO
	9	m1		And invert to $-y=-\frac{9}{(\ldots . . .)}$
	$\overline{3 x \cos 3 x-\sin 3 x+10}$	A1	9	CSO, condone first B1 not given
		Total	9	

Second M1 finding C; substitute $x=\frac{\pi}{6} \quad y=1$ into $\mathrm{f}(y)=p x \cos 3 x+q \sin 3 x+C$ and evaluate using radians. Must calculate a value of C.
m 1 for reaching form $\pm \frac{k}{y}=\frac{1}{9}(P x \cos 3 x+Q \sin 3 x+R)$ where P and Q are ± 3 or $\pm \frac{1}{3}$ or ± 1 and inverting to $\pm \frac{y}{k}=\frac{9}{(P x \cos 3 x+Q \sin 3 x+R)}$

Part (b) NB $p=\frac{3}{2}$ can come from wrong working where candidate uses $\overrightarrow{O C}$ in place of $\overrightarrow{B C}$.
This is M0 and scores no further marks, (unless they happen to find and go on to use it correctly).

General Certificate of Education (A-level) June 2012

Mathematics
MPC4

(Specification 6360)

Pure Core 4

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

Q	Solution	Marks	Total	Comments
1(a)(i)	$\begin{aligned} & 5 x-6=A(x-3)+B x \\ & x=0 \quad x=3 \\ & A=2 \quad B=3 \end{aligned}$	M1	2	Multiply by denominator and use two values of x.
	Alternative: equate coefficients $\begin{array}{rlrl} -6 & =-3 A & 5=A+B \\ A & =2 \quad B & =3 \end{array}$	$\begin{aligned} & \text { (M1) } \\ & \text { (A1) } \end{aligned}$		Set up and solve simultaneous equations for values of A and B.
(ii)	$\left(\int \frac{2}{x}+\frac{3}{x-3} \mathrm{~d} x=\right) 2 \ln x$	B1ft		their $A \ln x$
	$+3 \ln (x-3)(+C)$	B1ft	2	their $B \ln (x-3)$ and no other terms; condone $B \ln x-3$
(b)(i)	$\begin{gathered} \frac{2 x^{2}-x+3}{2 x+1} \begin{array}{l} 4 x^{3}+5 x-2 \\ 4 x^{3}+\frac{2 x^{2}}{-2 x^{2}}+5 x \\ -2 x^{2}-\frac{x}{6 x}-2 \\ 6 x+\frac{3}{-5} \end{array} \end{gathered}$	M1		Division as far as $2 x^{2}+p x+q$ with $p \neq 0, q \neq 0$, PI
	$p=-1$	A1		PI by $2 x^{2}-x+q$ seen
	$q=3$	A1		PI by $2 x^{2}-x+3$ seen
	$r=-5$	A1	4	and must state $p=-1, q=3$, $r=-5$ explicitly or write out full correct RHS expression
	Alternative 1: $\begin{aligned} & 4 x^{3}+5 x-2= \\ & 4 x^{3}+(2+2 p) x^{2}+(p+2 q) x+q+r \\ & 2+2 p=0 \\ & p+2 q=5 \end{aligned}$	(M1)		Clear attempt to equate coefficients, PI by $p=-1$
	$\begin{aligned} & q+r=-2 \\ & p=-1 \\ & q=3 \quad r=-5 \end{aligned}$	$\begin{gathered} (\mathrm{A} 1) \\ (\mathrm{A} 1 \mathrm{~A} 1) \end{gathered}$		
	Alternative 2: $\begin{aligned} & 4 x^{3}+5 x-2=(2 x+1)\left(2 x^{2}+p x+q\right)+r \\ & x=-\frac{1}{2} \quad 4 \times\left(-\frac{1}{2}\right)^{3}+5\left(-\frac{1}{2}\right)+2=r \end{aligned}$	(M1)		$x=-\frac{1}{2}$ used to find a value for r
	$r=-5$	(A1)		
	$p=-1, q=3$	(A1A1)		

MPC4

Q	Solution	Marks	Total	Comments
(b)(ii)	$\begin{gathered} \left(\frac{4 x^{3}+5 x-2}{2 x+1}=\right) 2 x^{2}+p x+q+\frac{r}{2 x+1} \\ \frac{2}{3} x^{3}-\frac{1}{2} x^{2}+3 x+k \ln (2 x+1) \quad(+C) \\ \frac{2}{3} x^{3}-\frac{1}{2} x^{2}+3 x-\frac{5}{2} \ln (2 x+1) \quad(+C) \end{gathered}$	M1 A1ft A1	3	ft on p and q CSO
	Total		11	
2(a)		B1		Accept 3.2 or better. Can be earned in (b)
	$\tan \alpha=3$ $\alpha=71.6$ or better	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	OE; M0 if $\tan \alpha=-3$ seen $\alpha=71.56505 \ldots$
(b)	$\begin{aligned} & \sin (x \pm \alpha)=\frac{-2}{R} \\ & x(=-39.2+71.6)=32(.333) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		or their R and/or their α; PI 32 or better Condone 32.4
	or $x-71.6=219.2$	m1		must see 219 and 72 or better PI by 291 or better as answer Condone extra solutions
	$x=291$	A1	4	Condone 290.8 or better CSO Withhold final A1 if more than two answers given within interval
	Total		7	

MPC4

Q	Solution	Marks	Total	Comments
$\begin{aligned} & 3(\mathrm{a}) \\ & \text { (b)(i) } \end{aligned}$	$\begin{aligned} (1+4 x)^{\frac{1}{2}} & =1+4 \times \frac{1}{2} x+k x^{2} \\ & =1+2 x-2 x^{2} \\ (4-x)^{-\frac{1}{2}} & =4^{-\frac{1}{2}}\left(1-\frac{x}{4}\right)^{-\frac{1}{2}} \\ \left(1-\frac{x}{4}\right)^{-\frac{1}{2}} & = \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	2	$\text { OE } \frac{1}{2}\left(1-\frac{x}{4}\right)^{-\frac{1}{2}}$
	$\begin{aligned} & 1+\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right)+\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{x}{4}\right)^{2} \\ & =1+\frac{1}{8} x+\frac{3}{128} x^{2} \\ & (4-x)^{-\frac{1}{2}}=\frac{1}{2}+\frac{1}{16} x+\frac{3}{256} x^{2} \end{aligned}$	M1 A1	3	Condone missing brackets and use of $\left(+\frac{x}{4}\right)$ instead of $\left(-\frac{x}{4}\right)$ CSO $0.5+0.0625 x+0.0117(1875) x^{2}$
	Alternative using formula from FB $\begin{aligned} (4-x)^{-\frac{1}{2}}= & 4^{-\frac{1}{2}}+\left(-\frac{1}{2}\right) \times 4^{-\frac{3}{2}}(-x) \\ & +\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \times 4^{-\frac{5}{2}}(-x)^{2} \\ = & \frac{1}{2}+\frac{1}{16} x+\frac{3}{256} x^{2} \end{aligned}$	(M1) (A2)		Condone one error and missing brackets CSO Must be fully correct
(b)(ii)	$-4<x<4$ or $\quad x<4$ and $x>-4$	B1	1	Condone $\|x\|<4$ Must be and; not or not , (comma)
(c)	$\begin{aligned} \sqrt{\frac{1+4 x}{4-x}} & =(1+4 x)^{\frac{1}{2}}(4-x)^{-\frac{1}{2}} \\ & =\left(1+2 x-2 x^{2}\right)\left(\frac{1}{2}+\frac{1}{16} x+\frac{3}{256} x^{2}\right) \\ & =\frac{1}{2}+\frac{17}{16} x-\frac{221}{256} x^{2} \end{aligned}$	M1 A1	2	product of their expansions CSO $0.5+1.0625 x-0.8632(8 . . .) x^{2}$
	Total		8	

MPC4

Q	Solution	Marks	Total	Comments
4(a)(i)	$1000 \times 1.03^{5} \approx(£) 1160$	B1	1	Condone missing $£$ sign;1160 only.
(ii)	$\begin{aligned} & 2000<1000\left(1+\frac{3}{100}\right)^{n} \\ & \ln 2<n \ln 1.03 \end{aligned}$	B1 M1		Condone '=' or ' $<$ ' used throughout Take logs, any base, of their initial expression correctly
	$(n>23.449 \ldots) \quad.(N=) 24$	A1	3	Condone 23
(b)	$1000 \times\left(1+\frac{3}{100}\right)^{n}>1500 \times\left(1+\frac{1.5}{100}\right)^{n}$	B1		Condone use of T for n Condone '=' or '<' used throughout
	$\begin{aligned} & \ln 1000+n \ln 1.03>\ln 1500+n \ln 1.015 \\ & n>\frac{\ln (1.5)}{} \end{aligned}$	M1		Take logs, any base, of their initial expression correctly
	$\ln \left(\frac{1.03}{1.015}\right)$	A1		Correct expression for n or T
	$(n>27.63 \ldots) \quad(T=) 28$	A1	4	Condone 27
	Total		8	

MPC4

MPC4

Q	Solution	Marks	Total	Comments
Q	$9 x^{2}-6 x y+4 y^{2}=3$			
	$18 x=0$	B1		$=0 \mathrm{PI}$
	$-6 y-6 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1		or $\frac{\mathrm{d}(6 x y)}{\mathrm{d} x}=6 y+6 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ seen separately
	$+8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1		$\frac{\mathrm{d} y}{\mathrm{~d} x}(-6 x+8 y)=6 y-18 x$
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$	M1		
	$\Rightarrow y=3 x \quad \text { or } \quad x=\frac{y}{3}$	A1		CSO
	$y=3 x \Rightarrow 9 x^{2}-6 x \times 3 x+4(3 x)^{2}=3$	m1		Substitute $y=a x$ into equation and solve for a value of x or y. Condone missing brackets.
	$27 x^{2}=3 \Rightarrow x= \pm \frac{1}{3} \quad \text { OE }$	A1ft		Both values of x or y required. ft on their $y=3 x$
	$\left(\frac{1}{3}, 1\right) \quad\left(-\frac{1}{3},-1\right)$	A1	8	CSO Correct corresponding simplified values of x and y. Withhold if additional answers given
	Total		8	

MPC4

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} 2 \lambda & =8+2 \mu \\ -2 \quad & =3+5 \mu \end{aligned}$	M1		Use the first two equations to set up and attempt to solve simultaneous equations for λ or μ. Must not assume $q=4$.
	$\begin{aligned} & q-\lambda=5+4 \mu \\ & \quad q=5+3-4=4 \end{aligned}$	A1		Use $3^{\text {rd }}$ equation to show $q=4 \mathrm{AG}$.
	P is at $(6,-2,1)$	B1	3	Condone as a column vector
(b)	$\left[\begin{array}{r}2 \\ 0 \\ -1\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 5 \\ 4\end{array}\right]=4-4=0 \Rightarrow$ perpendicular	B1	1	or $2 \times 2+-1 \times 4=0$ seen and conclusion (condone $\theta=90$)
(c)(i)	A is at $(2,-2,3)$ $\begin{aligned} A P^{2} & =(6-2)^{2}+(-2--2)^{2}+(1-3)^{2} \\ & =20 \end{aligned}$	M1 A1	2	$\begin{aligned} & \text { Candidate's }\|\overrightarrow{A P}\|^{2} \\ & \text { CAO } \\ & \text { NMS } A P=\sqrt{20} \quad \text { M1A0 } \end{aligned}$
(ii)	$(\overrightarrow{P B}=)\left[\begin{array}{l} 8 \\ 3 \\ 5 \end{array}\right]+\mu\left[\begin{array}{l} 2 \\ 5 \\ 4 \end{array}\right]-\left[\begin{array}{r} 6 \\ -2 \\ 1 \end{array}\right] \quad\left(=\left[\begin{array}{l} 2+2 \mu \\ 5+5 \mu \\ 4+4 \mu \end{array}\right]\right)$	M1		Clear attempt to find $\overrightarrow{B P}$ or $\overrightarrow{P B}$ in terms of μ
	$\left(P B^{2}=\right)(2+2 \mu)^{2}+(5+5 \mu)^{2}+(4+4 \mu)^{2}$	m1		Find distance $B P$ in terms of μ
	$\begin{aligned} & 45 \mu^{2}+90 \mu+45=20 \\ & \quad(5)\left(9 \mu^{2}+18 \mu+5\right)=0 \end{aligned}$	m1		Attempt to set up three-term quadratic in μ and equate to their $A P^{2}$
	$(3 \mu+1)(3 \mu+5)=0$	m1		Solve quadratic equation to obtain two values of μ
	$\mu=-\frac{1}{3} \text { and } \mu=-\frac{5}{3}$	A1		Both values correct.
	B is at $\left(\frac{22}{3}, \frac{4}{3}, \frac{11}{3}\right)$ and $\left(\frac{14}{3},-\frac{16}{3},-\frac{5}{3}\right)$	A1	6	Both sets of coordinates required. Condone column vectors. SC one value of μ correct and corresponding coordinates of B correct scores A1 A0.

MPC4

Q	Solution	Marks	Total	Comments
	Alternative 1 $\left(\overrightarrow{A B}=\left[\begin{array}{l} 8 \\ 3 \\ 5 \end{array}\right]+\mu\left[\begin{array}{l} 2 \\ 5 \\ 4 \end{array}\right]-\left[\begin{array}{r} 2 \\ -2 \\ 3 \end{array}\right] \quad\left(=\left[\begin{array}{l} 6+2 \mu \\ 5+5 \mu \\ 2+4 \mu \end{array}\right]\right)\right.$	(M1)		Clear attempt to find $\overrightarrow{A B}$ or $\overrightarrow{B A}$ in terms of μ
	$\left(A B^{2}=\right)(6+2 \mu)^{2}+(5+5 \mu)^{2}+(2+4 \mu)^{2}$	(m1)		Find distance $A B$ in terms of μ
	$\begin{aligned} & 45 \mu^{2}+90 \mu+65=40 \\ & (5)\left(9 \mu^{2}+18 \mu+5\right)=0 \end{aligned}$	(m1)		Attempt to set up three-term quadratic in μ and equate to their $2 \times$ their $A P^{2}$
	As before Alternative 2			
	$\overrightarrow{P B}=k\left[\begin{array}{l} 2 \\ 5 \\ 4 \end{array}\right]$	(M1)		
	$k^{2}\left(2^{2}+5^{2}+4^{2}\right)=20$	$\begin{aligned} & (\mathrm{m} 1) \\ & (\mathrm{m} 1) \end{aligned}$		m 1 for LHS m 1 for equating to 'their 20'
	$k= \pm \frac{2}{3}$	(A1)		May score M1m0m1
	$\overrightarrow{O B}=\overrightarrow{O P}+(\pm)(\text { their value of } k)\left[\begin{array}{l} 2 \\ 5 \\ 4 \end{array}\right]$	(m1)		
	B is at $\left(\frac{22}{3}, \frac{4}{3}, \frac{11}{3}\right)$ and $\left(\frac{14}{3},-\frac{16}{3},-\frac{5}{3}\right)$	(A1)		
	Total		12	

General Certificate of Education (A-level) January 2013

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

$\begin{gathered} 3 \\ \text { (b)(ii) } \end{gathered}$	Alternative $\begin{aligned} & \cot x-\sin 2 x=\frac{\cos x}{\sin x}-2 \sin x \cos x=0 \\ & \cos x\left(\frac{1}{\sin x}-2 \sin x\right)=0 \\ & \cos x=0 \text { or } 1-2 \sin ^{2} x=0 \\ & \sin x=(\pm) \frac{1}{\sqrt{2}} \\ & x=90^{\circ}, 45^{\circ}, 135^{\circ} \end{aligned}$	M1 m1 A1	3	Both equations

Q	Solution	Marks	Total	Comments
$\begin{gathered} 4 \\ (\mathbf{a})(\mathrm{i}) \end{gathered}$	$\begin{array}{r} 2 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x}{y} \end{array}$	M1	2	Correct differentiation
(ii)	$\text { at }(p, q) \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{p}{q}$	A1		(p, q) substituted into correct derivative or $x=p \quad y=q$ stated AG
	tangent at $(p, q) \quad y-q=\frac{p}{q}(x-p)$	B1	4	ACF
(b)	$\text { tangent at }(p,-q) \quad y-(-q)=\frac{-p}{q}(x-p)$	B1		ACF
	add $2 y=0$	M1		Solve tangent equations for y.
	conclusion $\quad y=0 \Rightarrow$ intersect on $O x$	A1		Conclusion required
	$x^{2}=t^{2}+4+\frac{4}{t^{2}} \quad y^{2}=t^{2}-4+\frac{4}{t^{2}}$	M1		Attempt to square x and y and subtract.
	$x^{2}-y^{2}=8$	A1	2	All correct AG Allow 8=8
	Total		8	

Q	Solution	Marks	Total	Comments
$\begin{gathered} 6 \\ (\mathbf{a})(\mathbf{i}) \end{gathered}$	$\overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=\left[\begin{array}{r} 8 \\ -4 \\ -6 \end{array}\right]-\left[\begin{array}{r} 3 \\ 1 \\ -6 \end{array}\right]=\left[\begin{array}{r} 5 \\ -5 \\ 0 \end{array}\right]=5\left[\begin{array}{r} 1 \\ -1 \\ 0 \end{array}\right]$	B1	1	Must see $\overrightarrow{O C}-\overrightarrow{O A}$ in correct components. $n=5$
(ii)	$\overrightarrow{B C}=\left[\begin{array}{r} 3 \\ -2 \\ -6 \end{array}\right]$	B1		$\overrightarrow{B C}$ or $\overrightarrow{C B}$ correct
	$5\left[\begin{array}{r} 1 \\ -1 \\ 0 \end{array}\right] \cdot\left[\begin{array}{r} 3 \\ -2 \\ -6 \end{array}\right]=5 \sqrt{2} \sqrt{49} \cos A C B$	M1		Correct form of formula using consistent vectors; condone use of θ or a wrong angle and a missing multiple of 5
	$5(3+2)=5 \sqrt{2} \sqrt{49} \cos A C B$	A1		Correct scalar product and moduli.
	$\cos A C B=\frac{J}{\sqrt{2} \times 7}=\frac{J V L}{2 \times 7}=\frac{\partial V \angle}{14}$	A1	4	AG Must see, or rearrangement $\cos A C B=\frac{5}{\sqrt{2} \times 7} \text { or } \frac{25}{35 \sqrt{2}}$
(b)	vector equation $\mathbf{r}=\left[\begin{array}{r}1 \\ -6\end{array}\right]+\lambda\left[\begin{array}{r}-5 \\ 0\end{array}\right]$	M1		$\mathrm{a}+\lambda \mathrm{d}$
		A1	2	OE
(c)(i)	$\left[\begin{array}{r} 3 \\ 1 \\ -6 \end{array}\right]+\lambda\left[\begin{array}{r} 5 \\ -5 \\ 0 \end{array}\right]=\left[\begin{array}{r} 5 \\ -2 \\ 0 \end{array}\right]+\mu\left[\begin{array}{l} 1 \\ 1 \\ p \end{array}\right]$	M1		Equate vector equations for $A C$ and $B D$. OE
	$\begin{aligned} 3+5 \lambda & =5+\mu \\ 1-5 \lambda & =-2+\mu \\ \mu & =\frac{1}{2} \end{aligned}$	M1 A1		Set up equations and solve for μ; must find a value for μ
	$-6=\mu p \Rightarrow p=-12$	A1	4	
(ii)	$\overrightarrow{A B}=\left[\begin{array}{r} 2 \\ -3 \\ 6 \end{array}\right] \quad \overrightarrow{C D}=\left[\begin{array}{r} -2 \\ 3 \\ -6 \end{array}\right]$	M1		Clear attempt to find the vectors of the sides.
	$\overrightarrow{A D}=\left[\begin{array}{r} 3 \\ -2 \\ -6 \end{array}\right] \quad \overrightarrow{B C}=\left[\begin{array}{r} 3 \\ -2 \\ -6 \end{array}\right]$	A1		All vectors correct
		m1		Find the lengths of the sides, or state they all $=\sqrt{49}$ if all correct.
	All sides are of same length, 7; hence rhombus.	A1	4	Each side $=7$ and conclusion. Or adjacdnt sides $=7$ and opposite sides are parallel.
	Total		15	

Q	Solution	Marks	Total	Comments
7 (a)(i) (ii)	$\begin{array}{ll} t=0 & N=50 \\ t=24 & N=345 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Must be 345 (not 345.2534..)
(iii)	$\begin{aligned} 1+9 \mathrm{e}^{-\frac{t}{8}}=\frac{500}{400} \Rightarrow 9 \mathrm{e}^{-\frac{t}{8}} & =\frac{1}{4} \\ \mathrm{e}^{\frac{t}{8}} & =36 \\ t & =8 \ln 36 \end{aligned}$	M1 m1 A1	3	Correct algebra seen Or $e^{-\frac{t}{8}}=\frac{1}{36}$ or $t=16 \ln 6$
(b)				
(i)	$\frac{\mathrm{d} N}{\mathrm{~d} t}=-500\left(1+9 \mathrm{e}^{-\frac{t}{8}}\right)^{-2}\left(-\frac{9}{8} \mathrm{e}^{-\frac{t}{8}}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Clear attempt at chain rule or quotient rule.
	$\begin{aligned} & =-500\left(-\frac{1}{8}\left(\frac{500}{N}-1\right)\right)\left(\frac{500}{N}\right)^{-2} \\ & =\frac{N^{2}}{500}\left(\frac{1}{8}\left(\frac{500}{N}-1\right)\right) \end{aligned}$	m1		Use $e^{-\frac{t}{8}}=\frac{1}{9}\left(\frac{500}{N}-1\right)$ to eliminate $\mathrm{e}^{-\frac{t}{8}}$.
	$\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N}{4000}(500-N)$	A1	4	Correct algebra to AG
(ii)	$\frac{\mathrm{d}}{\mathrm{~d} N}\left(500 N-N^{2}\right)=500-2 N$	M1		Differentiate and attempt to find N at max value
	$\begin{aligned} & 500-2 N=0 \Rightarrow N=250 \\ & 9 e^{-\frac{T}{8}}=1 \end{aligned}$	A1		Condone $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}$ for $\frac{\mathrm{d}}{\mathrm{d} N}$
	$e^{\frac{T}{8}}=9$	m1		
	$T=8 \ln 9=17(.577)$	A1	4	$T=17$ or better CSO Accept 17, 18, 17.5, 17.6
	Total		13	
	TOTAL		75	
(b)(ii)	Alternative, by inspection			
	Max of $N(500-N)$ occurs at $N=250$	B2		

Alternative 1 implicit differentiation
$\mathrm{e}^{-\frac{t}{8}}=\frac{500-N}{9 N}$
$\frac{\mathrm{d} t}{\mathrm{~d} N}\left(-\frac{1}{8} \mathrm{e}^{-\frac{t}{8}}\right)=-\frac{500}{9 N^{2}}$
use $\mathrm{e}^{-\frac{t}{8}}=\frac{1}{9}\left(\frac{500}{N}-1\right)$
to get $\frac{\mathrm{d} t}{\mathrm{~d} N}=\frac{4000}{9 N^{2}} \times \frac{9 N}{500-N}$

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N}{4000}(500-N)
$$

Alternative 2 explicit differentiation
$t=-8 \ln \left(\frac{500-N}{9 N}\right)$
$\frac{\mathrm{d} t}{\mathrm{~d} N}=-8\left(\frac{(500-N)\left(\frac{-1}{9 N^{2}}\right)-\frac{1}{9 N}}{\left(\frac{500-N}{9 N}\right)}\right)$
$=\frac{8}{9 N}\left(9+\frac{9 N}{500-N}\right)$
$=\frac{8}{9 N}\left(\frac{4500}{500-N}\right)$
$\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N}{4000}(500-N)$
Or
$t=-8(\ln (500-N)-\ln (9 N))$
$\frac{\mathrm{d} t}{\mathrm{~d} N}=-8\left(\frac{-1}{500-N}-\frac{9}{9 N}\right)$
$=8\left(\frac{1}{500-N}+\frac{1}{N}\right)$
$=8\left(\frac{N+500-N}{N(500-N)}\right)$

$$
=\frac{4000}{N(500-N)} \Rightarrow \frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{4000}{N(500-N)}
$$

Correct expressions for $\mathrm{e}^{-\frac{t}{8}}$ and attempt to use implicit differentiation Fully correct Attempt to eliminate $\mathrm{e}^{-\frac{t}{8}}$ using correct expression

Correct expression for t and attempt at differentiation with use of chain rule and product for ln derivative.

Clear fractions within fractions

Correct expression for t and \ln derivatives, condone sign errors

Common denominator to combine fractions

4 All correct

General Certificate of Education (A-level) June 2013

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$\begin{array}{cc} 5-8 x=A(1-3 x)+B(2+x) \\ x=-2 & x=\frac{1}{3} \\ A=3 & B=1 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	3	Two values of x used to find values for A and B
(ii)	$\begin{aligned} \int_{-1}^{0} \frac{3}{2+x}+ & \frac{1}{1-3 x} \mathrm{~d} x \\ & =3 \ln (2+x)-\frac{1}{3} \ln (1-3 x) \\ & =\left(3 \ln 2-\frac{1}{3} \ln 1\right)-\left(3 \ln 1-\frac{1}{3} \ln 4\right) \\ & =3 \ln 2+\frac{1}{3} \ln 4 \\ & =\frac{11}{3} \ln 2 \end{aligned}$	M1 m1 A1ft A1ft	4	$a \ln (2+x)+b \ln (1-3 x)$ where a and b are constants $\mathrm{f}(0)-\mathrm{f}(-1)$ used ft A and B $\mathrm{ft}\left(A+\frac{2}{3} B\right) \ln 2$
(b)(i)	$(C=) 2$	B1	1	
(ii)	$\int \frac{9-18 x-6 x^{2}}{2-5 x-3 x^{2}} \mathrm{~d} x=\int C \mathrm{~d} x+\int \frac{5-8 x}{2-5 x-3 x^{2}} \mathrm{~d} x$ $\int_{-1}^{0} \frac{9-18 x-6 x^{2}}{2-5 x-3 x^{2}} d x=2+\frac{11}{3} \ln 2$	M1 A1ft	2	Seen or implied. Allow $\pm C+\int \frac{5-8 x}{2-5 x-3 x^{2}} \mathrm{~d} x$ Accept $2+3 \ln 2+\frac{1}{3} \ln 4$ ft $2+$ candidate's answer to part (a)(ii) if exact.
(a)(i)	Alternative $\begin{aligned} 5-8 x & =A(1-3 x)+B(2+x) \\ 5 & =A+2 B \\ -8 & =-3 A+B \\ A & =3 \quad B=1 \end{aligned}$	$\begin{aligned} & \text { (M1) } \\ & \text { (m1) } \\ & \text { (A1) } \end{aligned}$	(3)	Set up simultaneous equations and solve.
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} & \lambda=-1 \\ & \lambda=-1 \text { verified in all three components } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\lambda=-1$ seen or implied Shown
(b)	$\pm\left[\begin{array}{r} -2 \\ -3 \\ 2 \end{array}\right]$	B1		$\overrightarrow{A B}$ or $\overrightarrow{B A}$ correct
(c)	$\mathbf{r}=\overrightarrow{O A}+\mu \overrightarrow{A B}=\left[\begin{array}{r} 3 \\ -2 \\ 4 \end{array}\right]+\mu\left[\begin{array}{r} -2 \\ -3 \\ 2 \end{array}\right]$	M1 A1ft	3	$\mathbf{a}+\mu \mathbf{d}$ OE; ft on $\overrightarrow{A B}$ or $\overrightarrow{B A}$
	$\begin{aligned} \overrightarrow{C D} & =\overrightarrow{O D}-\overrightarrow{O C} \\ & =\left[\begin{array}{r} 3-2 \mu \\ -2-3 \mu \\ 4+2 \mu \end{array}\right]-\left[\begin{array}{r} -4 \\ 5 \\ -1 \end{array}\right] \quad\left(=\left[\begin{array}{r} 7-2 \mu \\ -7-3 \mu \\ 5+2 \mu \end{array}\right]\right) \end{aligned}$	B1		$\pm \overrightarrow{C D} \text { in terms of } \mu$ OE
	$\begin{aligned} & \overrightarrow{C D} \cdot \overrightarrow{A B}=0 \text { or } \overrightarrow{C D} \cdot \overrightarrow{A D}=0 \\ & =\left(\left[\begin{array}{r} 3-2 \mu \\ -2-3 \mu \\ 4+2 \mu \end{array}\right]-\left[\begin{array}{r} -4 \\ 5 \\ -1 \end{array}\right]\right) \cdot\left[\begin{array}{r} -2 \\ -3 \\ 2 \end{array}\right]=0 \\ & -14+4 \mu+21+9 \mu+10+4 \mu=0 \end{aligned}$	M1		Candidate's $\overrightarrow{C D}$ sp with candidate's $\overrightarrow{A B}$ or $\overrightarrow{A D}$ $=0$ PI by a solution for μ
	$\begin{aligned} 17+17 \mu & =0 \\ \mu & =-1 \end{aligned}$	m1A1		Expand sp to an equation in μ and solve for μ
	D is at $(5,1,2)$	A1	5	Accept as a column vector
(d)	$\overrightarrow{O E}=\overrightarrow{O A}+\overrightarrow{A E}=\overrightarrow{O A}+3 \overrightarrow{A D}$	M1		Accept $A E=3 A D$
	$\overrightarrow{O E}=\left[\begin{array}{r} 5 \\ -2 \\ 4 \end{array}\right]+3\left[\begin{array}{r} 2 \\ 3 \\ -2 \end{array}\right] \quad E \text { is at }(9,7,-2)$	A1		Accept as a column vector
	$\overrightarrow{O E}=\overrightarrow{O A}+\overrightarrow{A E}=\overrightarrow{O A}+3 \overrightarrow{D A}$	M1		Accept $A E=3 D A$
	$\overrightarrow{O E}=\left[\begin{array}{r}3 \\ -2 \\ 4\end{array}\right]+3\left[\begin{array}{r}-2 \\ -3 \\ 2\end{array}\right] \quad E$ is at $(-3,-11,10)$	A1	4	Accept as a column vector.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 6(c)
(c) \& \begin{tabular}{l}
Alternative using Pythagoras
\[
\begin{aligned}
\overrightarrow{C D} \& =\overrightarrow{O D}-\mu \overrightarrow{O C} \\
\& =\left[\begin{array}{r}
3-2 \mu \\
-2-3 \mu \\
4+2 \mu
\end{array}\right]-\left[\begin{array}{r}
-4 \\
5 \\
-1
\end{array}\right] \quad\left(=\left[\begin{array}{r}
7-2 \mu \\
-7-3 \mu \\
5+2 \mu
\end{array}\right]\right)
\end{aligned}
\]
\[
\begin{aligned}
\& A C^{2}=A D^{2}+C D^{2} \\
\& \left(7^{2}+7^{2}+5^{2}\right)=\mu^{2}\left(2^{2}+3^{2}+2^{2}\right) \\
\& \quad+\left((7-2 \mu)^{2}+(7+3 \mu)^{2}+(5+2 \mu)^{2}\right)
\end{aligned}
\]
\[
\begin{aligned}
\& 123=17 \mu^{2}+123+34 \mu+17 \mu^{2} \\
\& 0=34 \mu^{2}+34 \mu \\
\& \mu=-1 \quad(\mu=0 \text { is point } A)
\end{aligned}
\] \\
\(D\) is at \((5,1,2)\) \\
Alternative
\[
\begin{aligned}
\& |\overrightarrow{D E}|=2|\overrightarrow{A D}| \Rightarrow \overrightarrow{O E}=\overrightarrow{O D}+2 \overrightarrow{A D} \\
\& \overrightarrow{O E}=\left[\begin{array}{l}
5 \\
1 \\
2
\end{array}\right]+2\left[\begin{array}{r}
2 \\
3 \\
-2
\end{array}\right] \quad E \text { is at }(9,7,-2) \\
\& |D E|=4|D A| \Rightarrow \overrightarrow{O E}=\overrightarrow{O D}+4 \overrightarrow{D A} \\
\& \overrightarrow{O E}=\left[\begin{array}{l}
5 \\
1 \\
2
\end{array}\right]+4\left[\begin{array}{r}
-2 \\
-3 \\
2
\end{array}\right] \quad E \text { is at }(-3,-11,10)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
(B1) \\
(M1) \\
(m1) \\
(A1) \\
(A1) \\
(M1) \\
(A1) \\
(M1) \\
(A1)
\end{tabular} \& (5)

(4) \& | $\pm \overrightarrow{C D}$ in terms of μ $\overrightarrow{A C}=\left[\begin{array}{r} -7 \\ 7 \\ -5 \end{array}\right] \quad \overrightarrow{A D}=\left[\begin{array}{r} -2 \mu \\ -3 \mu \\ 2 \mu \end{array}\right]$ |
| :--- |
| Correct Pythagoras expression in terms of μ; |
| Multiply out and solve to find a value for μ $\mu=-1$ |

\hline \& Total \& \& 14 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
7	$\begin{aligned} & \frac{\mathrm{d} h}{\mathrm{~d} t} \\ & a=1.3 \text { or } \quad a=-1.3 \\ & k=\frac{\pi}{6} \quad \text { or } \quad k=\frac{2 \pi}{12} \end{aligned}$	B1 B1 B1	1	$\frac{\mathrm{d} h}{\mathrm{~d} t} \text { seen }$
	Total		3	
8 (a) (b)		M1 A1 m1 A1 B1 B1 M1 A1 m1A1	6	Clear attempt to use parts $\begin{array}{ll} u=t & \frac{d v}{d t}=\cos \left(\frac{\pi}{4} t\right) \\ \frac{d u}{d t}=1 & v=k \sin \left(\frac{\pi}{4} t\right) \tag{dt} \end{array}$ Must be in terms of π Correct form, any non-zero values for p, q Any correct unsimplified form. Constant not required Correct separation and notation. $\frac{x^{2}}{2} \text { if } 32 \text { not brought over; allow } 32 \times \frac{x^{2}}{2}$ Equate to result from part (a) with constant and use $(0,4)$ to find a value for the constant Accept $C=254$ or better (254.37886...) Substitute $t=45$ into $\begin{aligned} & k x^{2}=p t \sin \left(\frac{\pi}{4} t\right)+q \cos \left(\frac{\pi}{4} t\right)+C \\ & p \neq 0, q \neq 0 \end{aligned}$ and calculate x. CSO
	Total		10	
	TOTAL		75	

AQA

A-LEVEL

MATHEMATICS

Pure Core 4 - MPC4
Mark scheme

6360
June 2014

Version/Stage: Final V1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
$\begin{gathered} 1 \\ \text { (a) } \end{gathered}$	$\begin{aligned} & \left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)=t \quad\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right)=-\frac{4}{t^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-\frac{4}{t^{2}}}{t} \\ & \text { At } t=2 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{2} \end{aligned}$	B1 M1 A1	3	ACF - Both correct. Attempt at their $\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$ CSO
(b)	$\begin{aligned} & t=\frac{4}{y+1} \text { and } x=\mathrm{f}(y) \\ & x=\frac{1}{2}\left(\frac{4}{y+1}\right)^{2}+1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Attempt to isolate t and attempt to substitute ACF
	Total		5	
	Alternatives			
(b)	$\begin{aligned} & x-1=\frac{t^{2}}{2} \quad(y+1)^{2}=\left(\frac{4}{t}\right)^{2} \\ & (x-1)(y+1)^{2}=8 \end{aligned}$	M1 A1	2	Solve for $\frac{t^{2}}{2}$ and $\left(\frac{4}{t}\right)^{2}$ and multiply ACF
(b)	$t^{2}=2 x-2 \quad \& \quad y=f(x)$ $y=\frac{4}{ \pm \sqrt{2 x-2}}-1$	M1 A1	2	Attempt to find t^{2} in terms of x and attempt to substitute. or $\quad(y+1)^{2}=\frac{16}{2 x-2} \quad$ ACF

Q	Solution	Mark	Total	Comment
2(a)	$\begin{gathered} 4 x^{3}-2 x^{2}+16 x-3= \\ A x\left(2 x^{2}-x+2\right)+B(4 x-1) \\ A=2 \\ B=3 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Attempt to multiply by $2 x^{2}-x+2$ or long division with $2 x$ seen or substitute two values of x A stated or written in expression B stated or written in expression
(b)	$\begin{aligned} & \int 2 x+\frac{3(4 x-1)}{2 x^{2}-x+2} \mathrm{~d} x= \\ & x^{2}+ \\ & 3 \ln \left(2 x^{2}-x+2\right) \quad(+C) \\ & 2=(-1)^{2}+3 \ln \left(2(-1)^{2}-(-1)+2\right)+C \\ & y=x^{2}+3 \ln \left(2 x^{2}-x+2\right)+1-3 \ln 5 \end{aligned}$	B1ft B1ft M1 A1	4	ACF $\mathbf{f t}$ on their A ft on their B Substitute $(-1,2)$ into an expression of form $y=a x^{2}+b \ln \left(2 x^{2}-x+2\right)+C$ and attempt to find the constant CAO
	Total		7	

(a) If M1 is not awarded then award SC1 for either $A=2($ or $2 x)$ or $B=3$.

NMS $A=2$ and $B=3$ scores SC3; as the values of A and B can be found by inspection.

Q	Solution	Mark	Total	Comment
3(a)	$\begin{aligned} (1-4 x)^{\frac{1}{4}} & =1+\frac{1}{4}(-4 x)+k x^{2} \\ & =1-x-\frac{3}{2} x^{2} \end{aligned}$	M1 A1	2	k is any non-zero numerical expression Simplified to this form , but allow -1.5
(b)	$\begin{aligned} & (2+3 x)^{-3}=2^{-3}\left(1+\frac{3}{2} x\right)^{-3} \\ & \left(1+\frac{3}{2} x\right)^{-3}=1-3 \times \frac{3}{2} x+\frac{-3 \times-4}{2}\left(\frac{3}{2} x\right)^{2} \\ & (2+3 x)^{-3}=\frac{1}{8}-\frac{9}{16} x+\frac{27}{16} x^{2} \end{aligned}$ Alternative $\begin{aligned} & (2+3 x)^{-3}= \\ & 2^{-3}+(-3) 2^{-4}(3 x)+\frac{1}{2}(-3)(-4) 2^{-5}(3 x)^{2} \\ & =\frac{1}{8}-\frac{9}{16} x+\frac{27}{16} x^{2} \end{aligned}$	B1 M1 A1 (M1) (A2)	3 (3)	OE e.g. $\frac{1}{8}\left(1+\frac{3}{2} x\right)^{-3}$ Condone missing brackets and one sign error or $\frac{1}{8}\left(1-\frac{9}{2} x+\frac{27}{2} x^{2}\right)$ Condone missing brackets and one sign error. A1 not available
(c)	$\begin{aligned} & \left(1-x-\frac{3}{2} x^{2}\right)\left(\frac{1}{8}-\frac{9}{16} x+\frac{27}{16} x^{2}\right) \\ & =\frac{1}{8}-\frac{11}{16} x+\frac{33}{16} x^{2} \end{aligned}$	M1 A1	2	Product of their expansions
	Total		7	

Q	Solution	Mark	Total	Comment
4 (a)	A = 5000	B1	1	
(b)(i)	$25000=5000 p^{10} \Rightarrow p^{10}=5$	B1	1	First equation seen and correct. AG
(ii)	$\begin{gathered} \ln p^{t}=t \ln p \\ \ln \left(\frac{75000}{A}\right)=\ln p^{t} \end{gathered}$ $t=\frac{10 \ln 15}{\ln 5} \text { or } t=16.8 \ldots$	B1 M1 A1 B1	4	PI Correctly taking logs of both sides. OE eg $\ln 75000=\ln A+\ln p^{t}$ OE e.g. $t=\frac{\ln 15}{\ln 1.175}$ or $16.79 \ldots$ $t=\frac{\ln 15}{\ln 5^{\frac{1}{10}}}$ etc.
(c)(i)	$\begin{gathered} 5000 p^{T-10}=2500 q^{T} \\ \ln 2+(T-10) \ln p=T \ln q \\ T=\frac{10 \ln p-\ln 2}{\ln p-\ln q} \\ p^{10}=5 \Rightarrow 10 \ln p=\ln 5 \Rightarrow T=\frac{\ln \left(\frac{5}{2}\right)}{\ln \left(\frac{p}{q}\right)} \end{gathered}$	B1 M1 m1 A1	4	Correct opening expression Use laws of logs correctly to obtain a linear equation in T. Powers must involve T and $T \pm 10$. Make T the subject of their expression correctly. $p^{10}=5 \Rightarrow 10 \ln p=\ln 5 \text { used to get }$ AG
(ii)	2023	B1	1	
	Total		11	

Q	Solution	Mark	Total	Comment
5 (a)(i)	$\begin{gathered} R=5 \\ \tan \alpha=\frac{4}{3} \\ \alpha=53.1^{\circ} \end{gathered}$	B1 M1 A1	3	$R \sin \alpha=4$ or $R \cos \alpha=3$ using their R $\sin \alpha=4 \quad \cos \alpha=3$ is M0 $53.1^{\circ} \text { only }$
(ii)	$\begin{gathered} 5 \sin (2 \theta+53.1)^{\circ}=5 \\ {\left[(2 \theta+53.1)^{\circ}=90^{\circ} \quad \text { and } 450^{\circ}\right]} \\ \theta=18.4^{\circ} \\ \theta=198.4^{\circ} \end{gathered}$	M1 A1 A1ft	3	Candidate's R and α but must use 2θ - PI. Accept $\theta=18.5^{\circ}$ $180^{\circ}+{ }^{\prime} \text { their ' } 18.4^{\circ}$
(b)(i)	$\begin{aligned} & \frac{2 \tan \theta}{1-\tan ^{2} \theta} \times \tan \theta=2 \\ & 2 \tan ^{2} \theta=2\left(1-\tan ^{2} \theta\right) \\ & 4 \tan ^{2} \theta=2 \\ & 2 \tan ^{2} \theta=1 \end{aligned}$	M1 A1	2	Use of correct form of $\tan 2 \theta$ Correct derivation of AG.
(ii)	$\begin{gathered} \theta=35.3^{\circ} \\ \theta=144.7^{\circ} \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(c)(i)	$8 \times \frac{1}{8}-4 \times \frac{1}{2}+1=0 \Rightarrow 2 x-1$ is a factor	B1	1	Accept $1-2+1=0$ but need the conclusion
(ii)	$4\left(2 \cos ^{2} \theta-1\right) \cos \theta+1=8 x^{3}-4 x+1$	B1	1	$\cos 2 \theta=2 \cos ^{2} \theta-1$ used correctly in deriving AG
(iii)	$\begin{gathered} 8 x^{3}-4 x+1=(2 x-1)\left(4 x^{2}+2 x-1\right) \\ x=\frac{-2 \pm \sqrt{20}}{8} \quad \text { or } \quad \frac{-2 \pm 2 \sqrt{5}}{8} \\ \left(\cos 72^{\circ}>0\right) \Rightarrow \cos 72^{\circ}=\frac{\sqrt{5}-1}{4} \end{gathered}$	B1 M1 A1	3	Award for quadratic factor Correct solution of their quadratic - ACF. CSO
	Total		15	

(a)(ii) Either $\theta=18.4^{\circ}$ or $\theta=198.4^{\circ}$ earns A1 and any extras in the interval together with the two correct values earns A1 A0ft
Award SC1 for both answers to greater degree of accuracy $18.43494 \ldots$ and $198.43494561 \ldots$
(b)(ii) Either $\theta=35.3^{\circ}$ or $\theta=144.7^{\circ}$ earns $\mathbf{B} 1$ and any extras in the interval together with the two correct values earns B1 B0
Award SC1 for both answers to greater degree of accuracy 35.26413... and 144.735561...

Q	Solution	Mark	Total	Comment
6(a)	$\begin{gathered} (\overrightarrow{O P})=\left[\begin{array}{r} 5 \\ -8 \\ 2 \end{array}\right] \quad(\overrightarrow{O Q})=\left[\begin{array}{r} 11 \\ -14 \\ 8 \end{array}\right] \\ (\overrightarrow{P Q})=\left[\begin{array}{r} 11 \\ -14 \\ 8 \end{array}\right]-\left[\begin{array}{r} 5 \\ -8 \\ 2 \end{array}\right] \text { or }\left[\begin{array}{r} 6 \\ -6 \\ 6 \end{array}\right] \\ \overrightarrow{P Q}=6\left[\begin{array}{r} 1 \\ -1 \\ 1 \end{array}\right] \end{gathered}$	B1 M1 A1	3	PI by correct $\overrightarrow{O P}$ and $\overrightarrow{O Q}$ below $\overrightarrow{P Q}= \pm \text { their }(\overrightarrow{O Q}-\overrightarrow{O P})$ or $\left[\begin{array}{r}6 \\ -6 \\ 6\end{array}\right]$ stated to be parallel to $\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$
(b)(i)	$\lambda=1 \text { or } \mu=-2$ $b=-5+3 \text { or } b=-8+6,(\text { their } \lambda \text { or } \mu)$ or $c=3+1$ or $c=6-2, \quad($ their λ or $\mu)$ $b=-2 \text { and } c=4$	B1 M1 A1	3	Attempt to find the value of b or c $b=-2 \text { shown and } c=4$
(ii)	$\overrightarrow{R S}=\left[\begin{array}{r} 5+2 t \\ -8-3 t \\ 2+t \end{array}\right]-\left[\begin{array}{r} 3 \\ -2 \\ 4 \end{array}\right]$ $2+2 t+6+3 t-2+t=0$ $t=-1$ S is at $(3,-5,1)$	M1 m1 A1 A1	4	Clear attempt to find $\pm \overrightarrow{R S}$ $\overrightarrow{R S} \bullet\left[\begin{array}{r} 1 \\ -1 \\ 1 \end{array}\right]=0 \quad \text { or } \overrightarrow{R S} \bullet\left[\begin{array}{r} 6 \\ -6 \\ 6 \end{array}\right]=0$ $=0 \mathrm{PI}$; correct direction vector Accept as a column vector.
	Total		10	

Q	Solution	Mark	Total	Comment
7(a)(i)	$\begin{gathered} -2 \sin 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ +3 y \mathrm{e}^{3 x}+\mathrm{e}^{3 x} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x}\left(\mathrm{e}^{3 x}-2 \sin 2 y\right)+3 \mathrm{ye}^{3 \mathrm{x}}=0 \\ \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ \mathrm{e}^{3 x}-2 \sin 2 y \\ \hline \end{gathered}$	B1 M1 A1 B1 m1 A1	6	$p y \mathrm{e}^{3 x}+q \mathrm{e}^{3 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ Product rule correct PI Attempt to factorise. OE
(ii)	At $A \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\pi$	B1	1	Must have scored all 6 marks in (a)(i)
(b)	$\left(y-\frac{\pi}{4}\right)=\frac{1}{\pi}(x-\ln 2)$ At $B \quad y=\frac{\pi}{4}-\frac{\ln 2}{\pi}$	M1 A1	2	Finding the equation of normal with gradient $\frac{-1}{\text { their }(a)(i i)}$.
	Total		9	
(b)	Alternative using $y=m x+c$ $\frac{\pi}{4}=\frac{1}{\pi} \ln 2+c \quad\left(y=\frac{1}{\pi} x+c\right)$ At $B \quad y=\frac{\pi}{4}-\frac{\ln 2}{\pi}$	M1 A1	2	Use $y=m x+c$ and find c using their gradient. Must see $y=\frac{\pi}{4}-\frac{\ln 2}{\pi}$ or a statement that c is the required y-coordinate

Q	Solution	Mark	Total	Comment
8 (a)	$\begin{aligned} & 16 x=A(1+x)^{2}+B(1-3 x)(1+x)+C(1-3 x) \\ & x=-1 \quad-16=4 C \\ & x=\frac{1}{3} \quad \frac{16}{3}=A\left(\frac{4}{3}\right)^{2} \\ & A=3 \quad B=1 \quad C=-4 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	4	OE Use $x=\frac{1}{3}$ or $x=-1$ to find a value for A or C. Any two correct All three correct
(b)	$\begin{aligned} & \int \frac{1}{\mathrm{e}^{2 y}} \mathrm{~d} y=\int \frac{16 x}{(1-3 x)(1+x)^{2}} \mathrm{~d} x \\ & \text { or } \quad \int \frac{\mathrm{d} y}{\mathrm{e}^{2 y}}=\int \frac{3}{1-3 x}+\frac{1}{1+x}-\frac{4}{(1+x)^{2}} \mathrm{~d} x \\ & \begin{array}{l} \frac{-\mathrm{e}^{-2 y}}{2} \\ = \\ \\ \quad+\ln (1-3 x) \\ -\frac{4}{2}(1+x) \\ -(-\ln 1+\ln 1)+4+\text { constant } \end{array} \\ & -\frac{1}{1+\frac{1}{2} \mathrm{e}^{-2 y}=} \begin{array}{l} -\ln (1-3 x)+\ln (1+x)+\frac{4}{1+x}-\frac{9}{2} \end{array} \end{aligned}$	B1 B1 B1ft B1ft B1ft M1 A1	7	or correct $\mathbf{f t}$ separation on nonzero ABC OE OE ft on $\frac{A}{-3} \ln (1-3 x)$ OE ft on $B \ln (1+x)$ OE ft on $\frac{C}{-1}(1+x)^{-1}$ Use $(0,0)$ and attempt to find a value for the constant. ACF
	Total		11	
	TOTAL		75	

(b) For M1 candidates must have a term of the form $\mathrm{ke}^{ \pm 2 y}$ on one side and at least one \ln term on the other, substitute $(0,0)$ and find a value for the constant.

A-LEVEL Mathematics
Pure Core 4 - MPC4
Mark scheme

6360

June 2015

Version 1.1: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & 19 x-2=A(1+6 x)+B(5-x) \\ & A=3 \\ & B=-1 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	Correct equation and attempt to find a value for A or B. NMS or cover up rule; A or B correct SC2 A and B correct SC3.
(b)	$\begin{aligned} & \int \frac{3}{5-x}-\frac{1}{1+6 x} \mathrm{~d} x \\ & =p \ln (5-x)+q \ln (1+6 x) \\ & =-3 \ln (5-x) \\ & \quad-\frac{1}{6} \ln (1+6 x) \\ & \begin{array}{l} \int_{0}^{4}=\left[-3 \ln 1-\frac{1}{6} \ln 25\right]-\left[-3 \ln 5-\frac{1}{6} \ln 1\right] \\ =-\frac{1}{6} \ln 25+3 \ln 5 \end{array} \\ & =\frac{8}{3} \ln 5 \end{aligned}$	M1 A1ft A1ft m1 A1 A1	6	Condone missing brackets OE Either term in a correct form ft on their A ft on their B Substitute limits correctly in their integral; $F(4)-F(0)$ ACF. $\ln 1=0$ PI CSO Condone equivalent fractions or recurring decimal
	Total		9	

Q2	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & R=\sqrt{29} \\ & \sqrt{29} \cos \alpha=2, \sqrt{29} \sin \alpha=5 \text { or } \tan \alpha=\frac{5}{2} \\ & \alpha=1.19 \end{aligned}$	B1 M1 A1	3	Allow 5.4 or better Their $\sqrt{29}$ Note $\cos \alpha=2$ or $\sin \alpha=5$ is M0 Must be exactly this
(b)(i)	$R \cos (x+\alpha)=R$ or $\cos (x+\alpha)=1$ or $x+\alpha=2 \pi$ or $x+\alpha=0$ or $x=-\alpha$ $(x=) 5.09$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Candidate's R and α Must be exactly this
(ii)	$\begin{aligned} & \cos (x+\alpha)=-\frac{1}{R} \\ & (x+\alpha=) 1.75757 \ldots \text { and } 4.52560 \ldots \\ & x=0.567 \text { and } x=3.34 \end{aligned}$	M1 A1 A1	3	Candidate's R and α; PI Rounded or truncated to at least 2 dp ; Ignore 'extra’ solutions Condone $x=0.568$; $x=3.34$ must be correct NMS is $0 / 3$ A0 if extra values in interval $0<x<2 \pi$
	Total		8	

Q3	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & \mathrm{f}\left(-\frac{1}{2}\right)=-1-3+1+d=-2 \\ & d=1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Attempt to evaluate $\mathrm{f}\left(-\frac{1}{2}\right)$ and equated to -2 NMS is $0 / 2$
(b)(i)	$(2 x+1)$ is a factor $g(x)=(2 x+1)\left(4 x^{2}+b x+3\right)$ $\begin{aligned} & g(x)=(2 x+1)\left(4 x^{2}-8 x+3\right) \\ & g(x)=(2 x+1)(2 x-1)(2 x-3) \end{aligned}$	B1 M1 A1	3	OE $\left(x+\frac{1}{2}\right)$ Attempt to find quadratic factor or a second linear factor using Factor Theorem OE if $\left(x+\frac{1}{2}\right)$ is used OE; must be a product NMS : SC3 if product is correct SC1 if one or two factors are correct
(ii)	$\begin{aligned} & \frac{4 x^{2}-1}{\mathrm{~g}(x)}=\frac{1}{2 x-3} \\ & \begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{2 x-3}\right) & =\frac{k}{(2 x-3)^{2}} \\ & =-\frac{2}{(2 x-3)^{2}} \end{aligned} \end{aligned}$ (Derivative is) negative, or <0 hence decreasing	B1 M1 A1 E1	4	Attempt to differentiate simplified h Correct derivative Explanation and conclusion required Derivative must be correct
	Total		9	
(b)(ii)	Special case $h(x)=\frac{1}{2 x-3}$ $2 x-3$ is an increasing function, so $\frac{1}{2 x-3}$ is a decreasing function	B1 E1	2	Award only if $\mathrm{h}(x)=\frac{1}{2 x-3}$ is correct

Q4	Solution	Mark	Total	Comment
(a)	$1+\frac{1}{5} \times 5 x+k x^{2}$ $1+x-2 x^{2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	k any non-zero numerical expression Simplified to this
(b) (i)	$\begin{aligned} & (8+3 x)^{-\frac{2}{3}}=8^{-\frac{2}{3}}\left(1+\frac{3}{8} x\right)^{-\frac{2}{3}} \\ & \left(1+\frac{3}{8} x\right)^{-\frac{2}{3}} \\ & =1+\left(-\frac{2}{3}\right)\left(\frac{3}{8} x\right)+\frac{1}{2}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(\frac{3}{8} x\right)^{2} \\ & \frac{1}{4}-\frac{1}{16} x+\frac{5}{256} x^{2} \end{aligned}$	B1 M1 A1	3	ACF for $8^{-\frac{2}{3}}=\frac{1}{4}$ Expand correctly using their $\frac{3}{8} x$ Condone poor use of or missing brackets Accept $=\frac{1}{4}\left(1-\frac{1}{4} x+\frac{5}{64} x^{2}\right)$
(ii)	$\begin{align*} & x=\frac{1}{3} \\ & 0.2313 \tag{4dp} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$x=\frac{1}{3}$ used in their expansion from (b)(i) Note 3 in $\mathbf{4}^{\text {th }}$ decimal place
	Total		7	

Q5	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & \left(\frac{\mathrm{d} x}{\mathrm{~d} t}=\right)-2 \sin 2 t \quad\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}=\right) \cos t \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) \frac{\cos t}{-2 \sin 2 t} \\ & \text { At } t=\frac{\pi}{6} \text { gradient } m_{\mathrm{T}}=-\frac{1}{2} \end{aligned}$	B1 M1 A1	3	Both correct Correct use of chain rule with their derivatives of form $a \sin 2 t, \quad b \cos t$
(b)	Gradient of normal $m_{\mathrm{N}}=2$ $\begin{aligned} & \left(y-\cos \left(\frac{2 \pi}{6}\right)\right)=m_{\mathrm{N}}\left(x-\sin \left(\frac{\pi}{6}\right)\right) \\ & y=2 x-\frac{1}{2} \end{aligned}$ Alternative for M1 $\sin \left(\frac{\pi}{6}\right)=2 \cos \left(\frac{2 \pi}{6}\right)+c$	B1ft M1 A1	3	ft gradient of tangent; $m_{\mathrm{N}}=\frac{-1}{m_{\mathrm{T}}}$ For m_{N}, allow their m_{T} with a change of sign or the reciprocal at $\left(\sin \frac{\pi}{6}, \cos \frac{2 \pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ Must be in this $y=m x+c$ form Use $y=m x+c$ to find c with their gradient m_{N} at $\left(\sin \frac{\pi}{6}, \cos \frac{2 \pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$
(c)	$\begin{aligned} & \cos 2 q=1-2 \sin ^{2} q \\ & \sin q=2\left(1-2 \sin ^{2} q\right)-\frac{1}{2} \\ & 8 \sin ^{2} q+2 \sin q-3=0 \quad \text { OE } \\ & \left(\sin q=\frac{1}{2}\right) \quad \sin q=-\frac{3}{4} \\ & (x=)-\frac{1}{8} \end{aligned}$	B1 M1 A1 A1 A1	5	Seen or used in this form Use parametric equations and candidate's $\cos 2 q$ in the form $\pm 1+k \sin ^{2} q$ Collect like terms; must be a quadratic equation Must come from a correct quadratic equation with the previous 3 marks awarded Previous 4 marks must have been awarded
	Total		11	

Mark scheme Alternative

Q5	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & x=1-2 y^{2} \quad 1=-4 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \text { or } \frac{\mathrm{d} x}{\mathrm{~d} y}=-4 y \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{4 \sin \frac{\pi}{6}} \\ & \text { At } t=\frac{\pi}{6} \text { gradient } m_{\mathrm{T}}=-\frac{1}{2} \end{aligned}$	B1 M1 A1	3	Find a correct Cartesian equation and differentiate implicitly correctly Use $y=\sin \frac{\pi}{6}$ or $y=\frac{1}{2}$ in their $\frac{\mathrm{dy}}{\mathrm{dx}}$; PI CSO
(b)	$\begin{aligned} & \text { Gradient of normal }=2 \\ & \left(y-\cos \left(\frac{2 \pi}{6}\right)\right)=m_{\mathrm{N}}\left(x-\sin \left(\frac{\pi}{6}\right)\right) \\ & y=2 x-\frac{1}{2} \end{aligned}$ Alternative for M1 $\sin \left(\frac{\pi}{6}\right)=2 \cos \left(\frac{2 \pi}{6}\right)+c$	B1ft M1 A1	3	ft gradient of tangent, $m_{\mathrm{N}}=\frac{-1}{m_{\mathrm{T}}}$ For m_{N}, allow their m_{T} with a change of sign or the reciprocal at $\left(\sin \frac{\pi}{6}, \cos \frac{2 \pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ CSO Use $y=m x+c$ to find c with candidate's gradient m_{N} at $\left(\sin \frac{\pi}{6}, \cos \frac{2 \pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$
(c)	$\begin{aligned} & x=1-2 y^{2} \\ & 1-2 y^{2}=\frac{y+\frac{1}{2}}{2} \\ & 4 y^{2}+y-\frac{3}{2}=0 \Rightarrow \\ & 8 \sin ^{2} q+2 \sin q-3=0 \\ & \left(\sin q=\frac{1}{2}\right) \quad \sin q=-\frac{3}{4} \\ & \quad(x=)-\frac{1}{8} \end{aligned}$	B1 M1 A1 A1 A1	5	PI by $x=1-2\left(2 x-\frac{1}{2}\right)^{2}$ Use their Cartesian equation and normal to eliminate X Collect like terms; must be a quadratic equation Must come from a correct quadratic equation with the previous 3 marks awarded Previous 4 marks must have been awarded
	Total		11	

(b)	Alternative by $\cos 60=\frac{1}{2}$			
	$\frac{1}{2}=\frac{\|\overrightarrow{A B}\|}{\|\overrightarrow{A C}\|}=\frac{\sqrt{56}}{\sqrt{(3 \lambda)^{2}+(\lambda)^{2}+(-2 \lambda)^{2}}}$	B1		
	$\frac{1}{4}=\frac{56}{14 \lambda^{2}}$	M1		Square and simplify
$\lambda^{2}=16 \Rightarrow \lambda=4 \quad($ or $\lambda=-4)$	A1			
	C is at $(15,6,2)$	A1	$\mathbf{4}$	Accept as a column vector

(c)	Alternatives			
Alt (i)				
	$\overrightarrow{O E}_{1}=\overrightarrow{O B}+\frac{1}{2} \overrightarrow{A C}=\left[\begin{array}{r} 5 \\ -2 \\ 4 \end{array}\right]+\frac{1}{2}\left[\begin{array}{r} 12 \\ 4 \\ -8 \end{array}\right]$ E_{1} is at $(11,0,0)$ $\overrightarrow{O E_{2}}=\overrightarrow{O B}+3 \overrightarrow{B E}_{1}=\left[\begin{array}{r} 5 \\ -2 \\ 4 \end{array}\right]+3\left[\begin{array}{r} 6 \\ 2 \\ -4 \end{array}\right]$ E_{2} is at $(23,4,-8)$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{gathered}$	4	Correct vector expression with their $\overrightarrow{B E}_{1}$ All correct
Alt (ii)				
	$\overrightarrow{O D}=\overrightarrow{O B}+\overrightarrow{A C}=\left[\begin{array}{r}5 \\ -2 \\ 4\end{array}\right]+\left[\begin{array}{r}12 \\ 4 \\ -8\end{array}\right]$ D is at $(17,2,-4)$ $\overrightarrow{O E_{2}}=\overrightarrow{O D}+\frac{1}{2} \overrightarrow{A C}=\left[\begin{array}{r}17 \\ 2 \\ -4\end{array}\right]+\frac{1}{2}\left[\begin{array}{r}12 \\ 4 \\ -8\end{array}\right]$ E_{2} is at $(23,4,-8)$ $\overrightarrow{O E_{1}}=\overrightarrow{O B}+\frac{1}{2} \overrightarrow{A C}=\left[\begin{array}{r}5 \\ -2 \\ 4\end{array}\right]+\frac{1}{2}\left[\begin{array}{r}12 \\ 4 \\ -8\end{array}\right]$ E_{1} is at $(11,0,0)$	B1 M1 A1 B1	4	Correct vector expression with their $\overrightarrow{O D}$ and their $\overrightarrow{A C}$

Q7	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & k=\left(\frac{1}{2}\right)^{3}+2 \mathrm{e}^{-3 \ln 2} \times \frac{1}{2}-\ln 2 \\ & =\frac{1}{8}+\frac{1}{8}-\ln 2=\frac{1}{4}-\ln 2 \end{aligned}$	B1	1	Clear use of $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$ and $\mathrm{e}^{-3 \ln 2}=\frac{1}{8}$ Accept $\frac{2}{8}-\ln 2$
(b)	$\begin{aligned} & 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & p y \mathrm{e}^{-3 x}+q \mathrm{e}^{-3 x} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & -6 y \mathrm{e}^{-3 x}+2 \mathrm{e}^{-3 x} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & \frac{3}{4} \frac{\mathrm{~d} y}{\mathrm{~d} x}-6 \times \frac{1}{8} \times \frac{1}{2}+2 \times \frac{1}{8} \frac{\mathrm{~d} y}{\mathrm{~d} x}-1 \quad(=0) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{11}{8} \quad \text { or } 1.375 \end{aligned}$	B1 M1 A1 B1 m1 A1	6	Both required -1 and no other terms Substitute $x=\ln 2$ or $\mathrm{e}^{-3 x}=\frac{1}{8}$ and $y=\frac{1}{2}$ into their expression
	Total		7	

Q8	Solution	Mark	Total	Comment
(a)(i)	$\begin{aligned} & \int \frac{1}{\sqrt{4+5 x}} \mathrm{~d} x=\int \frac{1}{5(1+t)^{2}} \mathrm{~d} t \\ & a(4+5 x)^{\frac{1}{2}} \text { or } b(1+t)^{-1} \\ & \frac{2}{5}(4+5 x)^{\frac{1}{2}} \\ & -\frac{1}{5}(1+t)^{-1} \quad(+C) \\ & x=0, t=0 \quad \Rightarrow \quad C=1 \\ & \frac{2}{5}(4+5 x)^{\frac{1}{2}}=1-\frac{1}{5}(1+t)^{-1} \\ & x=\frac{5}{4}\left(1-\frac{(1+t)^{-1}}{5}\right)^{2}-\frac{4}{5} \end{aligned}$	B1 M1 A1 A1 m1 A1 A1	7	Correct separation and notation seen on a single line somewhere in their solution OE $a \sqrt{4+5 x}$ or $b\left(\frac{1}{1+t}\right)$ OE $\frac{2}{5} \sqrt{4+5 x}$ OE $-\frac{1}{5(1+t)}$ Use $(0,0)$ to find a constant OE ACF eg $x=\frac{1}{20}\left(\frac{4+5 t}{1+t}\right)^{2}-\frac{4}{5}$
(b)(i)	$\begin{array}{lll} \hline \frac{\mathrm{d} r}{\mathrm{~d} t} & & \\ & \frac{1}{r^{2}} & \\ & & \frac{\mathrm{~d} r}{\mathrm{~d} t}=\frac{k}{r^{2}} \end{array}$	B1 M1 A1	3	Seen; allow R for r $\frac{1}{r^{2}}$ seen ; allow R for r Any constant k including $\frac{C}{\pi}$ but not including variable t Must use R or r consistently
(ii)	$\begin{aligned} \left(\frac{\mathrm{d} r}{\mathrm{~d} t}\right) & =4.5=\frac{k}{1^{2}} \quad \text { or } \quad 4.5=\frac{c}{\pi \times 1^{2}} \\ 0.5 & =\frac{4.5}{r^{2}} \Rightarrow r=3 \text { (metres) } \end{aligned}$	M1 A1	2	Use $\frac{\mathrm{d} r}{\mathrm{~d} t}=4.5$ with $r=1$ to find a value for the constant
	Total		12	

[^0]: Set and published by the Assessment and Qualifications Alliance.

[^1]: Set and published by the Assessment and Qualifications Alliance.

[^2]: Set and published by the Assessment and Qualifications Alliance.

[^3]: Set and published by the Assessment and Qualifications Alliance.

[^4]: Further copies of this Mark Scheme are available from: aqa.org.uk

